• Title/Summary/Keyword: HAZOP analysis

Search Result 78, Processing Time 0.031 seconds

Safety Enhancement of LPG Terminal by LOPA & SIF Method (LOPA 및 SIF기법에 의한 LPG 인수기지의 안전성향상에 대한 연구)

  • Lee, Il Jae;Kim, Rae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.431-439
    • /
    • 2015
  • The methods which decrease the accident hazards of LPG(Liquefied Petroleum Gas) terminal on the basis of butane & propane storage tanks by applying HAZOP(Hazard and Operability), LOPA(Layer of Protection Analysis) and SIL(Safety Integrity Level) are suggested. The accident scenarios were derived by analyzing latent risks through the HAZOP. The scenarios which would have the big damage effect in accidents were selected and then LOPA was assessed by analyzing IPL(Independent Protection Layer) about the correspond accident scenarios. The improved methods were proposed on the basis of level of SIF(Safety Instrumented Functions) as a IPL considering satisfied condition of risk tolerance criteria($1.0{\times}10^{-05}/y$). In addition, The proposed IPLs were basis on the economic analysis. The effect of SIF as a IPL considering the changes of accident frequency was studied in case of the accident scenarios derived from the concerned process.

Safety Improvements of Guardrail Coating Vehicle Using FMECA and HAZOP (FMECA와 HAZOP을 활용한 가드레일 코팅차량의 안전성 향상)

  • U.P. Chong;H.C. Park;B.C. Ahn;Y.S. Park;D.S. Han;H.J. Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.3
    • /
    • pp.73-81
    • /
    • 2023
  • This study uses FMECA (Failure Modes, Effects, and Criticality Analysis) and HAZOP (Hazard and Operability), which are widely applied in industrial areas, among risk assessment methods, and applies them to the same system. While FMECA evaluates system failure conditions and analyzes risks, HAZOP evaluates the system comprehensively by evaluating operational risks that may occur based on system parameters. According to data released by the Ministry of Land, Infrastructure and Transport, as of December 2021, the length of roads in Korea is 113,405 km, and the repair of guardrails that have expired must be fixed urgently in terms of traffic safety. Replacing all of these guardrails with new ones requires a very large cost, but if the guardrails are repaired with a vehicle equipped with the G-Save method, carbon emissions are reduced, the repair period is shortened, and great economic benefits can be obtained. However, risk assessment for guardrail coating vehicles has not been done so far. Focusing on this point, this study aims to evaluate the risk of these coating vehicles and describe the results. Finally, we found that the Risk Priority Numbers(RPN) in the FMECA risk assessment were greatly reduced, and 6 risk factors from HAZOP risk assessment and actions were taken.

FAULT TREE ANALYSIS OF KNICS RPS SOFTWARE

  • Park, Gee-Yong;Koh, Kwang-Yong;Jee, Eunk-Young;Seong, Poong-Hyun;Kwon, Kee-Choon;Lee, Dae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.397-408
    • /
    • 2008
  • This paper describes the application of a software fault tree analysis (FTA) as one of the analysis techniques for a software safety analysis (SSA) at the design phase and its analysis results for the safety-critical software of a digital reactor protection system, which is called the KNICS RPS, being developed in the KNICS (Korea Nuclear Instrumentation & Control Systems) project. The software modules in the design description were represented by function blocks (FBs), and the software FTA was performed based on the well-defined fault tree templates for the FBs. The SSA, which is part of the verification and validation (V&V) activities, was activated at each phase of the software lifecycle for the KNICS RPS. At the design phase, the software HAZOP (Hazard and Operability) and the software FTA were employed in the SSA in such a way that the software HAZOP was performed first and then the software FTA was applied. The software FTA was applied to some critical modules selected from the software HAZOP analysis.

Hazardous Material Process Risk Evaluation Using HAZOP and Bow-tie (HAZOP 및 BOW-TIE를 이용한 위험물질 취급공정의 위험성평가)

  • Min-Seo Nam;Byung-Tae Yoo
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.35-43
    • /
    • 2024
  • With continuous advancements in industry, science, and technology, there is a steady increase in the number and utilization of new chemicals. The growing societal emphasis on chemical safety management is paralleled by an increasing public demand for robust safety measures. While various ministries at the government level oversee the safety management of chemical substances, the occurrence of accidents related to chemical substances remains frequent each year due to problems such as aging facilities and careless handling. Upon analyzing domestic chemical accident cases, incidents occurred predominantly in the sequence of leakage, explosion, fire, and others. The main causes of these accidents were examined, revealing facility defects and non-compliance with safety management as the primary contributing factors. In this study, Hazard and Operability Analysis (HAZOP) was employed to identify hazardous risk factors associated with the handling of hydrofluoric acid in workplaces, and a risk assessment was performed using Bow-Tie method. Based on the results of this study, it is expected to enhance safety management plans aimed at preventing chemical accidents in workplaces dealing with similar facilities. Ultimately, these insights contribute to the development of an advanced chemical safety management system, capable of proactively preventing potential chemical accidents.

On the Safety Analysis of High Speed Railway Systems using the Hazard and Operability (HAZOP) technique (HAZOP을 이용한 고속철도시스템의 위험원 식별 및 안전성 분석에 관한 연구)

  • Jung, Ho-Jeon;Lee, Jae-Chon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.11a
    • /
    • pp.527-534
    • /
    • 2012
  • 오늘날 기술의 발전으로 시스템들은 점차 대형화 복잡화 되어가고 있다. 이처럼 점차 대형화 복잡화 되어가고 있는 시스템들은 더욱 커진 사고 및 고장에 대한 위험을 내재하게 된다. 또한 대형 복합 시스템에서 발생하는 사고 및 고장은 바로 큰 재산피해나 인명피해와 직결 될 수 있다. 따라서 체계적인 안전관리의 필요성이 점차 커지고 있다. 이에 대응하여 철도, 항공, 해양 등의 산업에서는 각 산업에 적합한 안전관리체계를 수립하려 노력하고 있으며, 표준 및 매뉴얼을 제정하여 보급에 앞장서고 있다. 예로써 가장 활발히 안전관리체계의 도입을 추구하고 있는 항공 분야에서는 국제민강항공기구와 미 연방항공청의 주도로 안전관리체계에 대한 가이드와 매뉴얼을 만들어 각국의 사정에 맞는 안전관리체계를 도입할 수 있는 바탕을 제공 하고 있다. 이처럼 점차 중요해지고 있는 안전관리체계내에서도 위험원 식별 및 분석활동은 그 중요성이 크다. 이를 통해 도출되는 위험원 및 위험원의 영향 및 원인이 시스템 개발 및 운용에서 수행하게 될 안전관리활동의 바탕이 되기 때문이다. 따라서 위험원 식별 및 분석활동에 적용하기 위한 여러 기법에 대한 연구가 활발히 이뤄지고 있다. 본 논문에서는 여러 가지 위험원 식별 기법 중 HAZOP을 이용하여 고속철도시스템의 위험원 식별 및 분석을 수행 했다. 또한 HAZOP의 수행 및 위험원 식별 활동의 프로세스 모델을 제시함으로써 실질적인 위험원 식별 활동의 수행에 도움이 될 것으로 기대한다.

  • PDF

Risk Assessment of Marine LPG Engine Using Fuzzy Multicriteria HAZOP Technique (퍼지 다기준 HAZOP 기법을 이용한 해상용 LPG 엔진의 위험성 평가)

  • Siljung Yeo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.238-247
    • /
    • 2023
  • Liquefied petroleum gas (LPG) is an attractive fuel for ships considering its current technology and economic viability. However, safety guidelines for LPG-fueled ships are still under development, and there have been no cases of applying LPG propulsion systems to small and medium-sized ships in Korea. The purpose of this study was to perform an objective risk assessment for the first marine LPG engine system and propose safe operational standards. First, hazard and operability (HAZOP) analysis was used to divide the engine system into five nodes, and 58 hazards were identified. To compensate for the subjectivity of qualitative evaluation using HAZOP analysis, fuzzy set theory was used, and additional risk factors, such as detectability and sensitivity, were included to compare the relative weights of the risk factors using a fuzzy analytical hierarchy process. As a result, among the five risk factors, those with a major impact on risk were determined to be the frequency and severity. Finally, the fuzzy technique for order of preference by similarity to ideal solution (TOPSIS) was applied to select the risk rank more precisely by considering the weights of the risk factors. The risk level was divided into 47 groups, and the major hazard during the operation of the engine system was found through the analysis to be gas leakage during maintenance of the LPG supply line. The technique proposed can be applied to various facilities, such as LPG supply systems, and can be utilized as a standard procedure for risk assessment in developing safety standards for LPG-powered ships.

Hazard Evaluation And Analysis For LNG Storage Tank (LNG 탱크의 위험도 평가 및 분석)

  • Kim, Myungbae;Do, Kyu Hyung
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.23-28
    • /
    • 2017
  • Hazard evaluation and FTA are performed as the first and the second step of QRA for a LNG storage tank. Hazards are identified using HAZOP. Each segment of the system is examined, and we list all possible deviations from normal operating conditions and how they might occur. The consequences on the process are assessed, and the means available to detect and correct the deviations are reviewed. The FTA is carried out to analyse the hazards identified from the HAZOP study. A top event is selected to be release of LNG. Then all combinations of individual failures that can lead to the hazardous event are shown in the logical format of the fault tree system.

A study on the safety assessment of Hydrogen refueling system (수소 충전 시스템의 안전성 평가에 관한 연구)

  • Kim, Tae Hun;Oh, Young Dal;Lee, Man Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.167-173
    • /
    • 2014
  • Hydrogen energy is expanding in range for civil use together with development of pollution-free power sources recently, and it is judged that the use of hydrogen will increase more as a part of carbon dioxide reduction measures according to the Climatic Change Convention. Especially, it is thought that the securement of safety of the used dispenser will be the biggest obstacle in the use of high-pressure hydrogen because the hydrogen station is operated in a high pressure. This study found risks in the process and problems on operation by making use of HAZOP(6 kinds), a qualitative safety evaluation technique, and FMEA(5 kinds), a fault mode effect analysis, for the hydrogen charging system at a hydrogen gas station, derived 6 risk factors from HAZOP and 5 risk factors from FMEA, and prepared measures for it.

Safety Assessment for Hydrogen Gas Filling Facilities(One-Bank) (One-Bank 방식의 수소충전장치에 대한 정성적 안전성 평가)

  • Rhie, Kwang-Won;Kim, Tae-Hun
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.95-100
    • /
    • 2012
  • This study is about the qualitative safety assessment for hydrogen gas filling facilities in Korea operating with one-bank type. The purpose of this safety assessment is about the development of components for design, fabrication, assembly, operability of dispenser and systems of the safety. For the qualitative safety assessment method, the study used FMEA(failure mode & effect analysis) and HAZOP(hazard & operability). This study evaluated the safety through FMEA and HAZOP then by referring to P&ID and PFD of hydrogen dispenser, thereby examining the dangerousness of the equipments, defects of the structure and problems of the operation.

A Study on Risk Analysis of Manufacturing Process Using the Bow-Tie Method (Bow-Tie기법을 이용한 제조공정의 위험성평가 연구)

  • Tae, Chan Ho;Lee, Heon Seok;Byun, Chul Hyun;Yang, Jae Mo;Park, Chulhwan;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.3
    • /
    • pp.33-38
    • /
    • 2013
  • The chemical industries have used large amounts of chemicals. If an accident occurs, it caused physical and human damage. We intended to investigate risk assessment for the prevention of accidents. The risk assessment by HAZOP technique has been applide to major chemical industries, and that result has been utilized efficiently. In this study, we analyzed Bow-Tie and HAZOP technique, and risk assesment was performed by Bow-Tie on toxic material process. As a result, the risk that can not be found in the risk assessment of the other is derived, and improvements of 14 to remove the dangers derived. Bow-Tie risk assessment is suitable to derive the applicability of risk factors in the field and to establish the improvement measures.