• Title/Summary/Keyword: HAUSAT-2

Search Result 29, Processing Time 0.018 seconds

Reliability Analysis with Space Radiation of Low-Cost COTS Small Satellite (우주방사능 효과를 고려한 저가 COTS 소형위성의 신뢰성 분석)

  • Jeong, Ji-Wan;Jang, Yeong-Geun;Mun, Byeong-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.56-67
    • /
    • 2006
  • The reliability and failure mode effect analysis are effective means to achieve efficient and cost-reduction design for satellite development. The failure rate of COTS (Commercial-Off-The-Shelf) parts required for reliability analysis is not usually provided from the manufacturer. Space environment factors based on empirical data obtained from MIL-HDBK-217F can be applicable to the reliability calculation. As a radiation environment factor, the occurrence rate of SEL (Single Event Latch-up) is additionally incorporated for the failure rate prediction. In this paper, the statistical reliability analysis method for low-cost small satellite using COTS parts is suggested. This statistical reliability analysis was applied to HAUSAT-2 small satellite whose electronic boxes are consisted of many COTS parts to calculate the system reliability at the end of design mission life.

Development and Performance Validation of Integrated Bus Electronic Unit for Small Satellite (소형위성용 통합형 전장박스의 개발 및 성능검증)

  • Chang, Jin-Soo;Kim, Dong-Woon;Kang, Suk-Jin;Lee, Byung-Hoon;Moon, Byoung-Young;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.353-362
    • /
    • 2007
  • Unlike large satellites, small satellites, such as nanosatellite and microsatellite, can provide a limited interior space for components mounting. In order to mitigate this issue, the compact Bus Electronic Unit(BEU) that integrates satellite electronic modules, combining most of bus subsystems and payload electronic modules into one unit, has been developed for HAUSAT-2 nanosatellite. This paper addresses the design and environmental test result analyses of BEU. The vibration and thermal vacuum tests were conducted at qualification level for the verification of design margin of newly developed BEU. The performance of individual electronic subsystem modules has been verified through performance tests before and after the qualification tests. It was confirmed that the natural frequency of BEU satisfies the design stiffness requirement without structural damage in the vibration test. Thermal analysis results were also almost consistent with test results through modified thermal analysis modeling.

Development of SEDT(System Engineering Design Tool) for Small Satellite Conceptual Design (소형위성 개념설계를 위한 SEDT의 개발)

  • Hwang, Ki-Lyong;Lee, Bo-Ra;Kim, Su-Jeoung;Ko, Sung-Hwan;Kwon, Soon-Kyung;Lee, Mi-Hyun;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.93-103
    • /
    • 2005
  • SEDT(System Engineering Design Tool) has been developed for small satellite conceptual design with an aim to verifying the nanosatellite HAUSAT-2 design. The program can calculate the mass and power of whole satellite system having specific mission and estimate the system cost based on mission and user requirements. It is containing various analysis data of more than 200 small satellites. The database will provide the trend analysis results of the small satellites which will become important design factors. This tool has also been verified by applying more than 10 small satellite data through case studies.

Modeling of Two-axis Miniature Fine Sun Sensor for Accuracy Improvement (정밀도 향상을 위한 2축 소형 정밀 태양센서의 모델링)

  • 윤미연;최정원;장영근;이병훈
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.71-78
    • /
    • 2006
  • Sun sensors are frequently implemented by satellites for attitude sensing, due to its simple manufacturability and light weight. A modeling of sun sensors has an important effect on the accuracy of satellite attitude determination. This paper addresses a new modeling of a 2-axis miniature fine sun sensor with improved accuracy. Unlike other previous algebraic modeling methods, the newly suggested physical modeling method takes into account the shadowing effect of the slit thickness. It was shown that a newly proposed sun sensor modeling provides a substantial accuracy improvement of 29% compared to the generic algebraic modeling. The proposed sensor modeling was validated using 2-axis fine sun sensors with FOV(Field of View) of ${\pm}60^{\circ}$ mounted on HAUSAT-2 small satellite, currently under development by SSRL(Space System Research Lab.) at Hankuk Aviation University, Korea.

RAPID INITIAL DETUMBLING STRATEGY FOR MICOR/NANOSATELLITE WITH PITCH BIAS MOMENTUM SYSTEM (피치 바이어스 모멘텀 방식 초소형 위성의 초기 자세 획득 방안 연구)

  • Lee Byung-Hoon;Choi Jung-Won;Yun Mi-Yeon;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2006.04a
    • /
    • pp.121-124
    • /
    • 2006
  • B-dot logic is generally used for controlling the initial tip-off rate. However, it has the disadvantage of taking a relatively long time to control the initial tip-off rate. To solve this problem, this paper suggests a new detumbling control method to be able to adapt to micro/nanosatellite with the pitch bias momentum system. Proposed detumbling method was able to control the angular rate within 20 minutes which is a significant reduction compared to conventional methods.

  • PDF