• Title/Summary/Keyword: HAT: Horizontal axis turbine

Search Result 15, Processing Time 0.029 seconds

Interference Effects on the Performance of Multi-arrayed HAT TCP Devices (복합배치 수평축 조류발전 로터의 간섭성능 고찰)

  • Jo, Chul-Hee;Lee, Kang-Hee;Yim, Jin-Young;Rho, Yu-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.36-40
    • /
    • 2010
  • Tidal current power system is the energy converter which converts the kinetic energy of tidal stream into electric energy. The performance of the rotor which initially converts the energy is determined by various design factors and it should be optimized by the ocean environment of the field. Flow direction changes due to rise and fall of the tides, but horizontal axis turbine is very sensitive to direction of flow. To investigate the rotor performance considering the interaction problems with incidence angle of flow, series of experiments have been conducted. The results and findings are summarized in the paper.

Numerical Analysis of HAT Tidal Current Rotors (수평축 조류발전로터 성능실험의 수치적 재현과 연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Chae, Kwang-Su;Rho, Yu-Ho;Song, Seung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.620-623
    • /
    • 2009
  • 여러 해양에너지 중 유체의 빠른 흐름을 이용하는 조류발전은 서해안과 남해안에 적용하기에 적합하며 해양환경의 영향을 최소화 하면서 많은 에너지를 연속적으로 생산할 수 있는 장점이 있다. 조류발전에서 1차적으로 에너지를 변환시키는 로터는 조류발전시스템의 주요한 장치중의 하나로 여러 변수에 의해 그 성능이 결정된다. 블래이드 수, 형상, 단면적, 허브, 직경 등 여러 요소를 고려하여 로터를 설계하며, 설계정보와 실험데이터를 바탕으로 수치모델을 구현하여 실험에서 직접 계측할 수 없는 로터 주변의 유체현상 및 간섭영향 등을 예측할 수 있다. 본 논문에서는 변화하는 유속에 따른 HAT 로터의 시동속도, 회전수를 측정하여 로터 형상과 허브-직경비가 다른 로터의 성능을 고찰하고, 이를 수치모델로 구현하여 로터주변 유동변화를 연구하였다.

  • PDF

Design Load Analysis of Current Power Rotor and Tower Interaction

  • Jo, Chul H.;Lee, Kang-Hee;Hwang, Su-Jin;Lee, Jun-Ho
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.164-168
    • /
    • 2013
  • Tidal-current power is now recognized as a clean power resource. The turbine blade is the fundamental component of a tidal current power turbine. The kinetic energy available within a tidal current can be converted into rotational power by turbine blades. While in service, turbine blades are generally subjected to cyclic fatigue loading due to their rotation and the rotor-tower interaction. Predicting the fatigue life under a hydrodynamic fatigue load is very important to prevent blade failure while in service. To predict the fatigue life, hydrodynamic load data should be acquired. In this study, the vibration characteristics were analyzed based on three-dimensional unsteady simulations to obtain the cyclic fatigue load. Our results can be applied to the fatigue design of horizontal-axis tidal turbines.

Comparative Study on Horizontal Axis Turbine(HAT) Impeller Design (HAT 임펠러 설계 비교 연구)

  • Kim, Moon-Chan;Shin, Byung-Chul;Lee, Ju-Hyun;Rhee, Shin-Hyung;Hyun, Beom-Soo;Nam, Jong-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • The present study deals with the investigation about the improvement of the design of tidal stream turbine blade (HAT) in comparison with wind turbine blade because the parameters of tidal stream turbine blade has been mostly derived from wind turbines. As such, there is plenty of room for improvement of the HAT impeller blade design. Comparisons have been done between the newly designed and existing impeller computationally. Similar comparisons will also be made for the experimental results in the near future.

The Wake Characteristics of Tidal Current Power Turbine (수평축 조류발전 후류 특성 및 발전 효율 분석)

  • Jo, Chulhee;Lee, Kanghee;Lee, Junho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.163.2-163.2
    • /
    • 2011
  • Due to global warming, the need to secure an alternative resource has become more important nationally. Due to the high tidal range of up to 9.7m on the west coast of Korea, numerous tidal current projects are being planned and constructed. To extract a significant quantity of power, a tidal current farm with a multi-arrangement is necessary in the ocean. The rotor, which initially converts the energy, is a very important component because it affects the efficiency of the entire system, and its performance is determined by various design variables. The power generation is strongly dependent on the size of the rotor and the incoming flow velocity. However, the interactions between devices also contribute significantly to the total power capacity. Therefore, rotor performance considering the interaction problems needs to be investigated for generating maximum power in a specific field. This paper documents the characteristics of wake induced by horizontal axis tidal current power turbine.

  • PDF

Vertical Axis Tidal Turbine Design and CFD hydrodynamic Analysis (CFD를 이용한 수직축 터빈 설계 및 유동특성 분석)

  • Jo, Chulhee;Ko, Kwangoh;Lee, Junho;Rho, Yuho;Lee, Kanghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.159.1-159.1
    • /
    • 2011
  • Due to the global warming, the need to secure the alternative resources has become more important worldwide. Having very strong current on the west coast with up to 10 m tidal range, there are many suitable sites for the application of TCP(Tidal current power) in Korea. Not only from the current produced from the high tidal range, but also it can be widely applied to the offshore jetties and piers. The VAT(Vertical axis turbine) system could be very effective tidal device to extract the energies from the attacking flow to the structures. For the relatively slow current speed, the VAT system could be more effective application than HAT(Horizontal axis turbine) device. The performance of VAT can be evaluated by various parameters including number of blades, shape, sectional size, diameters and etc. The paper introduces the multi-layer vertical axis tidal current power system with savonius turbine. The turbine was designed with consideration of optimal blade numbers and the performance was simulated by CFD analysis.

  • PDF

Design of Horizontal Axis Tidal Current Power Turbine with Wake Analysis (수평축 조류발전 터빈 설계 및 후류 특성 분석)

  • Jo, Chul-Hee;Kim, Do-Youb;Lee, Kang-Hee;Rho, Yu-Ho;Kim, Kook-Hyun
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.92-100
    • /
    • 2011
  • With the increased demand of clean energy and global warming measures, the renewable energy development has been increased recently. The TCP (Tidal Current Power) is one of the ocean renewable energy sources. Having the high tidal energy source in Korea, there are many potential TCP sites with strong current speed. The rotor, which initially converts the energy, is a very important component because it affects the efficiency of the entire system. The rotor performance is determined by various design parameters including number of blades, shape, sectional size, diameters and etc. However, the interactions between devices also contribute significantly to the energy production. The rotor performance considering the interaction needs to be investigated to predict the exact power in the farm. This paper introduces the optimum design of TCP turbine and the performance of devices considering the interference between rotors.

Performance Analysis on 2-Bladed Tidal Current Power Turbine (해양 조류발전용 2블레이드 터빈의 성능해석)

  • Lee, Kanghee;Yim, Jinyoung;Rho, Yuho;Song, Seungho;Jo, Chulhee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.236.1-236.1
    • /
    • 2010
  • Due to global warming, the need to secure an alternative resource has become more important nationally. Due to the high tidal range of up to 9.7m on the west coast of Korea, numerous tidal current projects are being planned and constructed. The rotor, which initially converts the energy, is a very important component because it affects the efficiency of the entire system, and its performance is determined by various design variables. In this paper, a design guideline of current generating HAT rotor and acceptable field rotor in offshore environment is proposed. To design HAT rotor model, wind mill rotor design principles and turbine theories were applied based on a field HAT rotor experimental data. To verify the compatibility of the rotor design method and to analyze the properties of design factors, 3D CFD model was designed and analysed by ANSYS CFX. The analysis results and findings are summarized in the paper.

  • PDF

Fundamental Study on the HAT Tidal Current Power Rotor Performance by CFD (CFD를 이용한 수평축 조류발전 로터 성능의 기초연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Chae, Kwang-Su;Rho, Yu-Ho;Song, Seung-Ho
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.3-8
    • /
    • 2009
  • Tidal current power system is one of ocean renewable energies that can minimize the environmental impact with many advantages compared to other energy sources. Not like others, the produced energy can be precisely predicted without weather conditions and also the operation rate is very high. To convert the current into power, the first device encountered to the incoming flow is the rotor that can transform into rotational energy. The performance of rotor can be determined by various design parameters including numbers of blade, sectional shape, diameter, and etc. The stream lines near the rotating rotor is very complex and the interference effects around the system is also difficult to predict. The paper introduces the experiment of rotor performance and also the fundamental study on the characteristics of three different rotors and flow near the rotor by CFD.

  • PDF

HAT Tidal Current Rotor Performance as per various Design Parameter (조류발전 로터 설계변수에 따른 성능 검토)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Song, Seung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.590-593
    • /
    • 2009
  • Tidal current power system is one of ocean renewable energies that can minimize the environmental impact with many advantages compared to other energy sources. Not like others, the produced energy can be precisely predicted without weather conditions and also the operation rate is very high. To convert the current into power, the first device encountered to the incoming flow is the rotor that can transform into rotational energy. The performance of rotor can be determined by various design parameters including numbers of blade, sectional shape, diameter, and etc. The stream lines near the rotating rotor is very complex and the interference effects around the system is also difficult to predict. This paper introduces the experiment of rotor performance and also the effect of design parameter on the performance of HAT rotor by CFD.

  • PDF