• Title/Summary/Keyword: HARP_Opt

Search Result 3, Processing Time 0.014 seconds

Blade Shape Optimization of Wind Turbines Using Genetic Algorithms and Pattern Search Method (유전자 알고리즘 및 패턴 서치 방법을 이용한 풍력 터빈 블레이드의 형상 최적화)

  • Yi, Jin-Hak;Sale, Danny
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.369-378
    • /
    • 2012
  • In this study, direct-search based optimization methods are applied for blade shape optimization of wind turbines and the optimization performances of several methods including conventional genetic algorithm, micro genetic algorithm and pattern search method are compared to propose a more efficient method. For this purpose, the currently available version of HARP_Opt (Horizontal Axis Rotor Performance Optimizer) code is enhanced to rationally evaluate the annual energy production value according to control strategies and to optimize the blade shape using pattern search method as well as genetic algorithm. The enhanced HARP_Opt code is applied to obtain the optimal turbine blade shape for 1MW class wind turbines. The results from pattern search method are compared with the results from conventional genetic algorithm and also micro genetic algorithm and it is found that the pattern search method has a better performance in achieving higher annual energy production and consistent optimal shapes and the micro genetic algorithm is better for reducing the calculation time.

Numerical investigation on effects of rotor control strategy and wind data on optimal wind turbine blade shape

  • Yi, Jin-Hak;Yoon, Gil-Lim;Li, Ye
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.195-213
    • /
    • 2014
  • Recently, the horizontal axis rotor performance optimizer (HARP_Opt) tool was developed in the National Renewable Energy Laboratory, USA. This innovative tool is becoming more popular in the wind turbine industry and in the field of academic research. HARP_Optwas developed on the basis of two fundamental modules, namely, WT_Perf, a performance evaluator computer code using the blade element momentum theory; and a genetic algorithm module, which is used as an optimizer. A pattern search algorithm was more recently incorporated to enhance the optimization capability, especially the calculation time and consistency of the solutions. The blade optimization is an aspect that is highly dependent on experience and requires significant consideration on rotor control strategies, wind data, and generator type. In this study, the effects of rotor control strategies including fixed speed and fixed pitch, variable speed and fixed pitch, fixed speed and variable pitch, and variable speed and variable pitch algorithms on optimal blade shapes and rotor performance are investigated using optimized blade designs. The effects of environmental wind data and the objective functions used for optimization are also quantitatively evaluated using the HARP_Opt tool. Performance indices such as annual energy production, thrust, torque, and roof-flap moment forces are compared.

Optimal Design of Blade Shape for 200-kW-Class Horizontal Axis Tidal Current Turbines (200kW급 수평축 조류발전 터빈 블레이드 형상 최적설계)

  • Seo, JiHye;Yi, Jin-Hak;Park, Jin-Soon;Lee, Kwang-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.366-372
    • /
    • 2015
  • Ocean energy is one of the most promising renewable energy resources. In particular, South Korea is one of the countries where it is economically and technically feasible to develop tidal current power plants to use tidal current energy. In this study, based on the design code for HARP_Opt (Horizontal axis rotor performance optimizer) developed by NREL (National Renewable Energy Laboratory) in the United States, and applying the BEMT (Blade element momentum theory) and GA (Genetic algorithm), the optimal shape design and performance evaluation of the horizontal axis rotor for a 200-kW-class tidal current turbine were performed using different numbers of blades (two or three) and a pitch control method (variable pitch or fixed pitch). As a result, the VSFP (Variable Speed Fixed Pitch) turbine with three blades showed the best performance. However, the performances of four different cases did not show significant differences. Hence, it is necessary when selecting the final design to consider the structural integrity related to the fatigue, along with the economic feasibility of manufacturing the blades.