• Title/Summary/Keyword: HA coating

Search Result 358, Processing Time 0.028 seconds

Pattern Identification of 97 Functional Dyspepsia Patients and the Characteristics of Each Pattern Type (기능성 소화불량 환자 97명의 변증유형별 특성)

  • Han, Ga-Jin;Kim, Jin-Sung;Park, Jae-Woo;Ryu, Bong-Ha
    • The Journal of Korean Medicine
    • /
    • v.32 no.2
    • /
    • pp.42-62
    • /
    • 2011
  • Objective: This study was designed to identify and explore the pathological patterns of functional dyspepsia (FD) patients. We also evaluated the usefulness of the Pattern Identification Questionnaire by comparing it with other assessment tools for FD. Methods: We recruited 97 FD patients based on the Rome III criteria for FD diagnosis. The pathological patterns of the subjects were determined by the Pattern Identification Questionnaire. Their dyspepsia-related symptoms were assessed using the Gastrointestinal Symptom Questionnaire (GIS) and the Pyeongwi-san (Pingwei-san) Patternization Questionnaire. Depressive symptoms were evaluated with the Beck Depression Inventory (BDI) and quality of life with the Functional Dyspepsia-Related Quality of Life (FD-QoL) Questionnaire. Tongue coating was measured by the Digital Tongue Diagnosis System (DTDS). Results: The male to female ratio was 1:1.1, and the forties and fifties age groups were largest in number. The spleen deficiency and phlegm-dampness pattern was the most common pattern found among the FD patients. No significant differences in the GIS, BDI, FD-QoL, and DTDS scores were found among the five pattern types. All pattern types showed significant correlation with GIS, Pyeongwi-san Patternization Questionnaire, and FD-QoL scores. Conclusions: Pattern Identification Questionnaire can not only identify the pathological pattern types of FD patients but also evaluate the severity of their symptoms. Compared to conventional assessment tools for FD, it could enable a more dynamic evaluation of FD patients reflecting the severity of dyspeptic symptoms and the quality of life. Further studies on the Pattern Identification of FD patients are anticipated in order to improve the diagnosis and therapy for Korean FD patients.

Drying Characteristics by Infrared Heating of agricultural products (원적외선 가열에 의한 농산물의 건조특성)

  • Sang, Hie-Sun;Bae, Nae-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • Infrared heating has been traditionally used in industrial applications for processes such as dehydration of food industrial. This heating method involves the application of radiation in the wavelength range of 2 to 50 micrometers. In this work, simultaneous heat balance equations were developed to simulate the infrared radiation heating of agricultural products. The equations assume that moisture diffuses to the outer boundaries of the material in liquid form and evaporation occurs at the surface of the agricultural products. Energy for moisture evaporation is supplied by the infrared radiant energy. The optimum temperature and drying time for the best drying conditions of changing the red peppers with the moisture content of 18% and the restore rate of 80~85% are $80^{\circ}C$ and 44 hours. The performance of radiation tubes coating with the radiation paint developed in this research has the energy of $2.27{\times}103W/m^2{\mu}m$, $150^{\circ}C$ within the scope of radiation wave length of $2{\sim}30{\mu}m$ and has the radiation 0.92~0.93, which is superior to the general radiation tubes. The extinction coefficient according to the band pass filter using the 4 flux theory ha higher dependability on wave length, accounting for $2{\sim}17{\mu}m$ and $5{\times}105{\sim}106m-1$. A comparison between the theoretical energy transfer whose figures are interpreted according to 4 flux theory and the experimental energy transfer of far infrared dryer leads to the findings of the agreement less than 5%.

  • PDF

Preparation and Physical Properties of Two-Component Polyurethane Coatings Containing Alkyd Modified Polyesters (알키드 변성폴리에스테르를 함유하는 2성분계 폴리우레탄 도료의 제조와 도막물성)

  • Shin, Jae-Hyun;Kim, Sung-Gea;Ha, Kyung-Jin;Park, Hong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.907-913
    • /
    • 1997
  • Alkyd modified polyester was synthesized by the polycondensation of 1,4-butanediol, trimethylolpropane, adipic acid, and the intermediate obtained by the esterification of 3,5,5-trimethylhexanoic acid(THA) and trimethylolpropane, where the contents of THA as a component of alkyd polyol in the intermediate were changed according to 10, 20, and 30wt%, respectively. Two-component polyurethane coatings were prepared by blending the synthesized alkyd modified polyester with Desmodur L-75 as a component of polyisocyanate. Various tests for coating properties with the prepared coatings show that high fineness of grind of $8^-$point, short drying time of 2~3 hours, and long pot-life of 18~23 hours were observed with the content of 3,5,5-trimethylhexanoic acid.

  • PDF

A Study on the Media Treatment Technology of the High-Coloured Digital Textile Printing (고발색 디지털 프린팅을 위한 미디어 전처리 기술)

  • Hong, Min-Gi;Lee, Ha-Na;Kim, Ji-Young;Zhang, Lian-Ping;Yoon, Seok-Han;Kim, Mi-Kyung;Kim, Sam-Soo
    • Textile Coloration and Finishing
    • /
    • v.19 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • In recent years, the application of digital textile printing has increased. The benefits of using this method include the ease of sampling and the production of printed textiles. However, the production process of digital textile printing differs from that of conventional printing. For successful digital textile printing by ink-jet technology, the pretreatment of fabrics is very important in order to overcome the following problems. Low viscosity ink can spread easily on the textile surface leading to poor resolution. As a result, the combination of ink and pretreatment chemicals is still impractical and consequently most fabrics used in digital textile printing will require a pre treated coating in order to prevent the ink colours from bleeding on the fabric. Research presented in this paper shows some preliminary attempts to establish the relationship between the pre treatment and the digital textile printing quality. Various cotton fabrics were treated with pre treatment agents including ingredients like thickener, alkali and humectant, and then ink spread effect and colour yield of printed fabrics by reactive ink were analysed by using an optical microscope and K/S value. The results show that digital textile printing quality on cotton fabrics can be optimized with appropriate pre treatments.

$SiN_x$ Film Deposited by Hot Wire Chemical Vapor Deposition Method for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지 적용을 위한 HWCVD $SiN_x$ 막 연구)

  • Kim, Ha-Young;Park, Min-Kyeong;Kim, Min-Young;Choi, Jeong-Ho;Roh, Si-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.27-33
    • /
    • 2014
  • To develop high efficiency crystalline solar cells, the $SiN_x$ film for surface passivation and anti-reflection coating is very important and it is generally deposited by PECVD. In this paper, the $SiN_x$ film deposited by Hot-Wire chemical vapor deposition(HWCVD) that has no plasma damage was studied. First, to optimize the $SiN_x$ film deposition process, $SiH_4$ gas rate and substrate temperature were varied and then refractive index and thickness were measured. When $SiH_4$ gas rate was 22sccm and substrate temperature was $100^{\circ}C$, refractive index was 1.94 and higher than that of other process conditions. Second, the lifetime was measured by varying the annealing temperature and time. The annealing process was made from 5 to 30 minutes at $300{\sim}500^{\circ}C$. When the annealing temperature was $100^{\circ}C$ and time was 10minute, the lifetime was the highest. The lifetime of annealed samples was also measured after the firing process at $975^{\circ}C$. Although the lifetime of all samples was decreased by firing process, the lifetime of annealed samples before the firing process was higher than that of fired samples only. Finally, the characteristics of solar cells with HWCVD $SiN_x$ film were measured.

Surface Observation of Mg-HA Coated Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.198-198
    • /
    • 2016
  • An ideal orthopedic implant should provide an excellent bone-implant connection, less implant loosening and minimum adverse reactions. Commercial pure titanium (CP-Ti) and Ti alloys have been widely utilized for biomedical applications such as orthopedic and dental implants. However, being bioinert, the integration of such implant in bone was not in good condition to achieve improved osseointegraiton, there have been many efforts to modify the composition and topography of implant surface. These processes are generally classified as physical, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO) as an electrochemical route has been recently utilized to produce this kind of composite coatings. Mg ion plays a key role in bone metabolism, since it influences osteoblast and osteoclast activity. From previous studies, it has been found that Mg ions improve the bone formation on Ti alloys. PEO is a promising technology to produce porous and firmly adherent inorganic Mg containing $TiO_2$($Mg-TiO_2$ ) coatings on Ti surface, and the amount of Mg introduced into the coatings can be optimized by altering the electrolyte composition. In this study, a series of $Mg-TiO_2$ coatings are produced on Ti-6Al-4V ELI dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. Based on the preliminary analysis of the coating structure, composition and morphology, a bone like apatite formation model is used to evaluate the in vitro biological responses at the bone-implant interface. The enhancement of the bone like apatite forming ability arises from $Mg-TiO_2$ surface, which has formed the reduction of the Mg ions. The promising results successfully demonstrate the immense potential of $Mg-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Shear bond strength of composite resin to titanium according to various surface treatments

  • Lee, Seung-Yun;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.68-74
    • /
    • 2009
  • STATEMENT OF PROBLEM. When veneering composite resin-metal restoration is prepared, the fact that bond strength between Ti and composite resin is relatively weak should be considered. PURPOSE. The purpose of this study is to evaluate the shear bond strength between the veneering composite resin and commercial pure (CP) Ti / Ti-6Al-4V alloy according to the method of surface treatment. MATERIAL AND METHODS. The disks were cast by two types of metal. Their surfaces were treated by sandblasting, metal conditioner, TiN coating and silicoating respectively. After surface treatment, the disks were veneered by composite resin (Tescera$^{TM}$, Bisco, USA) which is 5 mm in diameter and 3 mm in thickness. The specimens were stored in water at $25^{\circ}C$ for 24 hours, and then evaluated for their shear bond strength by universal testing machine (STM-$5^{(R)}$, United Calibration, USA). These values were statistically analyzed. RESULTS. 1. All methods of surface treatment were used in this study satisfied the requirements of ISO 10477 which is the standard of polymer-based crown and bridge materials. 2. The metal conditioner treated group showed the highest value in shear bond strength of CP Ti, silicoated group, TiN coated group, sandblasted group, in following order. 3. The silicoated group showed the highest value in shear bond strength of Ti-6Al-4V alloy, metal conditioner treated group, sandblasted group, TiN coated group, in following order. CONCLUSION. Within the limitations of this study, all methods of surface treatment used in this study are clinically available.

A Study of the Evaluation of Combustion Properties of Tetralin (테트랄린의 연소특성치 평가에 관한 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.8-14
    • /
    • 2018
  • In the industrial chemical process involving combustible materials, reliable safety data are required for design prevention, protection and mitigation measures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. The combustion parameters necessary for process safety are lower flash point, upper flash point, fire point, lower explosion limit(LEL), upper explosion limit(UEL)and autoignition temperature(AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. In the chemical industries, tetralin which is widely used as a raw material of intermediate products, coating substances and rubber chemicals was selected. For safe handling of tetralin, the lower and flash point, the fire point, and the AIT were measured. The LEL and UEL of tetralin were calculated using the lower and upper flash point obtained in the experiment. The flash points of tetralin by using the Setaflash and Pensky-Martens closed-cup testers measured $70^{\circ}C$ and $76^{\circ}C$, respectively. The flash points of tetralin using the Tag and Cleveland open cup testers are measured $78^{\circ}C$ and $81^{\circ}C$, respectively. The AIT of the measured tetralin by the ASTM E659 apparatus was measured at $380^{\circ}C$. The LEL and UEL of tetralin measured by Setaflash closed-cup tester at $70^{\circ}C$ and $109^{\circ}C$ were calculated to be 1.02 vol% and 5.03 vol%, respectively. In this study, it was possible to predict the LEL and the UEL by using the lower and upper flash point of tetralin measured by Setasflash closed-cup tester. A new prediction method for the ignition delay time by the ignition temperature has been developed. It is possible to predict the ignition delay time at different ignition temperatures by the proposed model.

Humidity Sensor using Polyvinylpyrrolidone-Coated Mach-Zehnder Interferometer in Planar Lightwave Circuit (폴리비닐피롤리돈이 코팅된 마하젠더 간섭계 기반의 평판형 광도파로 습도센서)

  • Kim, Ju Ha;Kim, Myoung Jin;Jung, Eun Joo;Hwang, Sung Hwan;Lee, Woo Jin;Choi, Eun Seo;Rho, Byung Sup
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.5
    • /
    • pp.251-255
    • /
    • 2013
  • In this paper, the characteristics of a humidity sensor implemented by Mach Zehnder Interferometer (MZI) in a Planar Lightwave Circuit (PLC) have been designed and demonstrated. The humidity outside is detected with polyvinylpyrrolidone (PVP) coated on the etched arm of the MZI. The length of the etched arm is 10 mm and the PVP was coated by dip-coating into the etched region. As the refractive index of the PVP changes with the surrounding humidity, the PVP-coated humidity sensor presented changes in the interferogram depending on RH (Relative Humidity) around the PLC. The measured results show that the proposed humidity sensor works successfully in the range of 30% to 80% of RH.

Removal of arsenic from aqueous phase using magnetized activated carbon and magnetic separation

  • Kwon, H.W.;Shin, T.C.;Kim, J.J.;Ha, D.W.;Kim, Min Gyu;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.1-5
    • /
    • 2018
  • Arsenic (As) is one of the elements having most harmful impact on the human health. Arsenic is a known carcinogen and arsenic contamination of drinking water is affecting on humans in many regions of the world. Adsorption has been proved most preferable technique for the removal of arsenic. Many researchers have studied various types of solid materials as arsenic adsorbent, and iron oxide and its modified forms are considered as the most effective adsorbent in terms of adsorption capacity, recovery, and economics. However, most of all iron oxides have small surface area in comparing with common adsorbents in environmental application such as activated carbon but the activated carbon has weak sorption affinity for arsenic. We have used an activated carbon as base adsorbent and iron oxide coating on the activated carbon as high affinity sorption sites and giving magnetic attraction ability. In this study, adsorption properties of arsenic and magnetic separation efficiency of the magnetized activated carbon (MAC) were evaluated with variable iron oxide content. As the iron oxide content of the MAC increased, adsorption capacity has also gradually increased up to a point where clogging by iron oxide in the pore of activated carbon compensate the increased sorption capacity. The increase of iron oxide content of the MAC also affected magnetic properties, which resulted in greater magnetic separation efficiency. Current results show that magnetically modified common adsorbent can be an efficiency improved adsorbent and a feasible environmental process if it is combined with the magnetic separation.