• Title/Summary/Keyword: H9c2 cardiomyoblast cells

Search Result 17, Processing Time 0.026 seconds

Protective Effects of Palmul-tang on Hypoxia-induced Apoptosis in H9c2 Cardiomyoblast Cells (팔물탕이 저산소증에 의한 배양심근세포고사에 미치는 영향)

  • 임은경;신선호
    • The Journal of Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.67-76
    • /
    • 2004
  • Objectives : This study was designed to investigate the protective mechanisms of Palmul-tang on hypoxia-induced cytotoxicity in H9c2 cardiomyoblast cells. Methods : In this study, we used H9c2 cells. Cells were subjected to hypoxia in the absence and presence of $1000\mu\textrm{g}/ml$ Palmul-tang for 24 hrs. Cells were treated with various concentrations of Palmul-tang for 24 hrs. Cell viability was measured by MTT assay. Hypoxia markedly decreased the viability of H9c2 cells, which was characterized with apparent apoptotic features such as chromatin condensation as well as fragmentation of genomic DNA and nuclei. Results : Palmul-tang significantly reduced hypoxia-induced cell death and apoptotic characteristics. Also, Palmul-tang prevented mitochondrial dysfunction including the disruption of mitochondrial membrane permeability transition (MPT) and an increase in expression of apoptogenic Bcl-2 proteins in hypoxia-H9c2 cells. Conclusions; This study suggests that the protective effects of Palmul-tang against hypoxic damages may be mediated by the modulation of Bcl-2, Bax expression.

  • PDF

Protective Effects of Boyanghwanoh-tang on Zinc-mediated Cytotoxicity in H9c2 Cardiomyoblast Cells (산화적 손상에 의해 유발된 심근세포 독성에 대한 보양환오탕(補陽還五湯)의 방어효과)

  • Rhim, Eun-Kyung;Jeong, Hyun-Ae;Shin, Sun-Ho;Lee, Yun-Jae
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.409-419
    • /
    • 2005
  • The water extract of Boyanghwanoh-tang has been used for treatment of ischemic vascular disease in oriental medicine. However, little is known about the mechanism by which the water extract of Boyanghwanoh-tang rescues cells from these damages. Therefore, this study was designed to evaluate the protective effects of Boyanghwanoh-tang on zinc-mediated cytotoxicity in H9c2 cardiomyoblast cells. This study demonstrates that, after treatment of H9c2 cells with zinc, there was a decrease in cell viability in a dose dependent manner, and there was a chromatin condensation. Zinc induced the change of cell morphology. In addition, zinc induced mitochondrial dysfunction. Zinc-induced H9c2 cell death was remarkably prevented by the pretreatment of Boyanghwanoh-tang consistently with increase of the peroxoredoxin 1, 2, 3, 5, and 6 expression. Taken together, the results suggest that zinc induced severe cell death in H9c2 cardiomyoblast cells, and that protective effects of Boyanghwanoh-tang against oxidative injuries are achieved through regulation of peroxiredoin expression.

  • PDF

Protective Effects of Dohongsamul-tang on Zinc-mediated Cytotoxicity in H9c2 Cardiomyoblast Cells (산화적 손상에 의해 유발된 심근세포 독성에 대한 도홍사물탕의 방어효과)

  • You Bong Sun;Jung Jae Eun;Park Jin Young;Yun Jong Min;Lee In;Moon Byung Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1374-1381
    • /
    • 2004
  • The water extract of Dohongsamul-tang(DHSMT)has been traditionally used for treatment of ischemic heart in oriental medicine. However, little is known about the mechanism by which the water extract of DHSMT rescues cells from these damages. Therefore, this study was designed to evaluate the protective effects of DHSMT on zinc-mediated cytotoxicity in H9c2 cardiomyoblast cells. This study demonstrates that treatment of H9c2 cells with zinc caused a decrease in cell viability in a dose dependent manner and a chromatin condensation. Zinc induced the cleavage of poly(ADP-ribose) polymerase (PARP). In addition, zinc induced the decrease of Bcl-2, as well as increase of Bak expression and mitochondrial dysfunction. Zinc-induced H9c2 cell death was remarkably prevented by the pretreatment of DHSMT with consistent suppression of the cleavage of poly(ADP-ribose) polymerase (PARP), mitochondrial dysfunction and the expression of Bak and Bcl-2. Taken together, the results suggest that zinc induced severe cell death in H9c2 cardiomyoblast cells via intracellular GSH(reduced glutathione) depletion and the protective effects of DHSMT against oxidative injuries may be achieved through modulation of mitochondrial dysfunction and scavenging of ROS(reactive oxygen species).

Protective Effects of Gyungokgo on Oxidative Stress-Induced Apoptosis of H9c2 Cardiomyoblast Cells (산화적 손상으로 유발된 심근세포 고사에 대한 경옥고의 방어효과)

  • Shin Sun-Ho;Yang Kyung-Suk
    • The Journal of Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.149-159
    • /
    • 2004
  • Backgrounds & Objectives : The water extract of Gyungokgo (GOG) has traditionally been used for treatment of general weakness and hemoptysis in oriental medicine. However, little is known about the mechanism by which the water extract of GOG rescues cells from these damages. This study was designed to investigate the protective mechanisms of GOG on H2O2­induced cell death in H9c2 cardiomyoblasts. Methods : In this study, we used H9c2 cells. Cells were treated with oxidative stress in the absence and presence of 1000㎍/ml GOG for 12hrs. Cells were treated with various concentrations of GOG for 12hrs. Cell viability was measured by MTT assay. Oxidative stress, which markedly decreased the viability of H9c2 cells, was characterized by apparent apoptotic features such as chromatin condensation as well as fragmentation of genomic DNA and nuclei. Results : GOG significantly reduced H₂O₂-induced cell death and apoptotic characteristics. The cotreatment of GOG and H₂O₂ in H9c2 cells also induced the phosphorylation of ERKs in a time-dependent manner. Moreover, PD098059, a MEK1 (upstream activator of ERK) inhibitor attenuated the protective effect of GOG on H₂O₂-induced cytotoxicity in H9c2 cardiomyoblast cells. Conclusions : These results suggest that MEK/ERK pathways play important roles in the protective effects of GOG in H9c2 cells. Taken together, they suggest that the protective effects of the water extracts of GOG against oxidative damages may be mediated by the regulation of HO-1, Fas/FasL and Bcl-XS proteins.

  • PDF

Protective Effects of Samul-tang on ${H_2O_2}-induced$ Cell Apoptosis in Cultured Cardiomyoblast Cells ($H_2O_2$에 의한 배양심근세포고사에 미치는 사물탕의 방어효과)

  • 박종운;한상혁;김도환;문병순
    • The Journal of Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.58-68
    • /
    • 2001
  • Objectives : This study was designed to investigate the protective mechanisms of Samul-tang (SMT) on $H_2O_2$-induced toxicity in H9c2 cardiomyoblast cells. Methods : The cultured cells were pretreated with SMT and exposed to $H_2O_2$. The cell damage was assessed by using MTT assay. Also, we used Hoechst staining, Western blotting analysis. Results : SMT significantly reduced both $H_2O_2$-induced cell death and chromatin fragmentation. The decrease of Bcl2 expression by $H_2O_2$ was inhibited by SMT. In addition, the increase of Bax expression was also inhibited by SMT. In particular, Fas expression, which is generally recognized as cell death inducing signal by Fas/FasL interaction, was markedly decreased by $H_2O_2$ in a time-dependent manner, whereas this decrease was completely prevented by SMT. The cotreatment of SMT and $H_2O_2$ in H9c2 cells also induced the phosphorylation of ERK in a time-dependent manner. Moreover, PD098059, a specific inhibitor of ERKl/2, attenuated the protective effect of SMT on $H_2O_2$-induced toxicity in H9c2 cardiomyoblast cells. Furthermore, the protective effect of SMT was significantly blocked by treatment of SB203580, a specific inhibitor of p38. Conclusions : Taken together, this study suggests that the protective effects of the water extract of SMT against oxidative damages may be mediated by the modulation of Bel2 and Bax expression via the regulation of ERK and p38 signaling pathway.

  • PDF

Protective Effects of Samul-tang on Oxidative Stress induced Death of H9c2 Cardioblast Cells (배양심근세포의 산화적 손상에 대한 사물탕의 방어효과)

  • Cho Kwon-Il;Jung Seung-Won;Jang Jae-Ho;Lee Dae-Yong;Park Sae-Wook;Lee In;Sin Sun-Ho;Moon Byung-Soon
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.174-186
    • /
    • 2005
  • Objectives : The water extract of Samul-tang (SMT) has traditionally been used for treatment of ischemic heart and brain damage in oriental medicine. However, little is known about the mechanism by which the water extract of SMT rescues cells from these damages. Methods: This study was designed to investigate the protective mechanisms of SMT on oxidative stress-induced toxicity in H9c2 cardiomyoblast cells. Treatment with $H_2O_2$ markedly induced death of H9c2 cardiomyoblast cells in a dose-dependent manner. Results: The characteristics of H20z-induced death of H9c2 showed apparent apoptotic features such as DNA fragmentation and morphological change. However, SMT significantly reduced both H202-induced cell death and morphological change. The decrease of Bc-2 expression by High were inhibited by SMT. In addition, the increase of Bax expression was also inhibited by SMT. The cotreatment of SMT and $H_2O_2$ in H9c2 cells also induced the phosphorylation of ERK in a time-dependent manner. Moreover, PD98059, a specific inhibitor of ERK1/2 attenuated the protective effects of SMT on $H_2O_2-induced$ toxicity in H9c2 cardiomyoblast cells. These results suggest that both ERK1/2 signaling pathways play important roles in the protective effects of SMT on $H_2O_2-induced$ apoptotic death of H9c2 cells. Also, the expression profile of proteins in $H_2O_2$ cardiomyoblast cells were screened by using two-dimensional (2-D) gel electrophoresis. Among 300 spots resolved in 2-D gels, the comparison of control versus apoptosis cells revealed that signal intensity of 17 spots increased and 11 spots decreased. Conclusions: Taken together, this study suggests that the protectiw effects of the water extract of SMT against oxidative damages may be mediated by the modulation of Bc1-2 and Bax expression via the regulation of the ERK signaling pathway.

  • PDF

Effects & Mechanism of Omija-tang on Oxidative Stress-Induced Death of H9c2 Cardiomyoblast Cell (심근세포의 산화적 손상에 대한 오미자탕의 효과 및 작용기전 연구)

  • 황보연;양경석;이상관;이기상;문병순;신선호
    • The Journal of Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.140-150
    • /
    • 2002
  • Objectives: The water extract of Omija-tang (OMIT) has traditionally been used for treatment of ischemic heart and brain damage in oriental medicine. However, little is known about the mechanism by which the water extract of OMJT rescues cells from these damages. Therefore, this study was designed to investigate the protective mechanisms of OMJT on oxidative stress-induced toxicity in H9c2 cardiomyoblast cells. Methods: Treatments of $H_2O_2$, or $ZnC_{12}$ markedly induced death of H9c2 cardiomyoblast cells in a dose-dependent manner. The characteristics of oxidative stress-induced death of H9c2 showed apparent apoptotic features such as DNA fragmentation. OMJT significantly reduced both ${H_2O_2}-induced$ cell death and chromatin fragmentation. The decrease of B치-XL expression by $H_2O_2$ were inhibited by OMJT. In addition, the increase of Bcl-XS expression was also inhibited by OMJT. In particular, Fas expression, which is generally recognized as cell death-inducing signal by Fas/FasL interaction, was markedly increased by H2O2 in a time-dependent manner. Also, the expression profile of proteins in Chang cells were screened by using two-dimensional (2-D) gel electrophoresis. Among 300 spots resolved in 2-D gels; the comparison of control versus apoptotis cells revealed that signal intensity of 6 spots decreased and 11 spots increased. Results and Conclusions: Taken together, this study suggests that the protective effects of the water extract of OMJT against oxidative damages may be mediated by the modulation of Bcl-XL/S Fas expression.

  • PDF

Effects of Dancheonhwan on Hydrogen Peroxide-induced Apoptosis of H9c2 Cardiomyoblasts (단천환이 Hydrogen Peroxide에 의한 심근세포 독성에 미치는 영향)

  • Na Yeong Hun;Bak Sang Beom;Jeong Seung Won;Yun Jong Min;Lee In;Moon Byung Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.774-782
    • /
    • 2004
  • The water extract of Dancheonhwan (DCH) has been used to treat ischemic brain and heart damage in oriental medicine. However, little is known about the mechanism by which the water extract of DCH rescues cells from ischemic damage. Therefore, this study was designed to investigate the protective mechanisms of DCH on the H₂O₂-induced toxicity in H9c2 cardiomyoblast cells. Treatment of H₂O₂ markedly decreased the viability of H9c2 cardiomyoblast in a dose-dependent and time-dependent manner. The nature of H₂O₂-induced toxicity of H9c2 cells resulted from apoptotic death confirmed with genomic DNA fragmentation. DCH increased the viability of H₂O₂-treated H9c2 cells by about 23%, and partially suppressed the genomic DNA fragmentation and PARP cleavage. H₂O₂ also activated caspase-3 protease and -9 protease, but not both caspase-6 protease and -8 protease. H₂O₂ induced the mitochondria dysfunction, including mitochondria membrane permeability transition (MPT) and cytosolic release of cytochrome c from mitochondria, which was prevented in part by pretreatment of DCH. N-acetylcystein (NAC), a free-radical scavenger, alone increased the viability of H₂O₂-treated H9c2 cells in a dose-dependent manner. Furthermore, the combination of NAC with DCH significantly increased the viability of the H₂O₂-treated H9c2 cells in a dose-dependent manner. These data indicate that DCH has the protective effect on ROS-induced apoptosis of cadiomyoblast H9c2 cells.

Conjugated Linoleic Acid (CLA) Ameliorates Hydrogen Peroxide-Induced Oxidative Stress on Rat Cardiomyoblast H9c2 Cells (Hydrogen peroxide를 처리한 rat 배아심근 H9c2 세포에서 CLA의 oxidative stress 완화 효과)

  • Park, Jae Hong;Moon, Yeon Gyu;Kwon, Jung Min;Cho, Yong Un;Kim, Jeong Ok;Ha, Yeong Lae
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1658-1664
    • /
    • 2012
  • Conjugated linoleic acid (CLA) exhibits several beneficial biological activities including anticarcinogenesis and body-fat reduction. Now, we report that CLA ameliorated the oxidative stress in rat cardiomyoblast cells, H9c2, treated with hydrogen peroxide ($H_2O_2$). Cells were cultured in DMEM/F-12 media at $37^{\circ}C$ with humidified atmosphere of 5% $CO_2$. The cells, cultured for 48 hrs, were seeded at a density $3.5{\times}10^3$ cell/well in a 24 well-plate and incubated for 24 hr. Using these cells, two experiments were performed: the cytotoxicity test of CLA (10, 20, 30, 40, and $50{\mu}Ms$), and the oxidative stress amelioration test of CLA (20 and $50{\mu}Ms$) against cells treated with $H_2O_2$ (10 and 50 ${\mu}Ms$) for 1 and 2 hrs. CLA enhanced the growth of H9c2 cells at any concentrations of CLA and at any incubation times (up to 6 days), indicating that CLA acts as a growth stimulant. No protective effect of CLA (20 and $50{\mu}Ms$) was seen in cells treated $50{\mu}M$ $H_2O_2$ for 1 and 2 hr, but these CLA concentrations ameliorated (p<0.05) the adverse effect of $10{\mu}M$ $H_2O_2$ in cells treated for 1 hr. These CLA concentrations significantly (p<0.05) reduced the proportion of apoptotic cells, relative to control cells. These results suggest that CLA protected H9c2 cells from the oxidative stress of $H_2O_2$ through the suppression of cell apoptosis and could be a useful compound for the prevention of cardiac diseases caused by oxidative stress.

Protective Effects of Omijatang on Oxidative Stress-Induced Apoptosis of H9c2 Cardiomyoblast Cells (오미자탕(五味子湯)이 산화적 손상으로 유발된 세포고사에 미치는 영향)

  • Choi, Jin-Young;Shin, Sun-Ho;Lee, Yun-Jae
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.420-430
    • /
    • 2005
  • The water extract of Omijatang(OMJT) has been traditionally used for treatment of abscess and heart palpitation in oriental medicine, However, little is known about the mechanism by which the water extract of OMJT rescues cells from these damages. This study was designed to investigate the protective mechanisms of OMJT in H9c2 cardiomyoblasts on oxidative stress-induced cytotoxicity including $H_2O_2,\;ZnCl_2$, hypoxia, and reoxygenation. Oxidative stress markedly decreased the viability of H9c2 cells. This was characterized with apparent apoptotic features such as chromatin condensation as well as fragmentation of genomic DNA and nuclei. However, OMJT significantly reduced $H_2O_2$-induced cell death and apoptotic characteristics as well as $ZnCl_2$, hypoxialreoxygenation. Taken together, this study suggests that the water extract of OMJT has the protective effects against oxidative injuries.

  • PDF