• Title/Summary/Keyword: H7N1

Search Result 4,368, Processing Time 0.031 seconds

Fabrication and Characterization of High Performance Green OLEDs using $Alq_3$-C545T Systems ($Alq_3$-C545T시스템을 이용한 고성능 녹색 유기발광다이오드의 제작과 특성 평가)

  • Jang Ji-Geun;Kim Hee-Won;Shin Se-Jin;Kang Eui-Jung;Ahn Jong-Myong;Lim Yong-Gyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.51-55
    • /
    • 2006
  • The green emitting high performance OLEDs using the $Alq_3$-C545T fluorescent system have been fabricated and characterized. In the device fabrication, 2-TNATA [4,4',4'-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as a hole injection material and NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as a hole transport material were deposited on the ITO(indium thin oxide)/glass substrate by vacuum evaporation. And then, green color emission layer was deposited using $Alq_3$ as a host material and C-545T[10-(2-benzothiazolyl)-1,1,7,7- tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]/benzopyrano[6,7,8-ij]-quinolizin-11-one] as a dopant. Finally, small molecule OLEDs with structure of ITO/2-TNATA/NPB/$Alq_3$:C545T/$Alq_3$/LiF/Al were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. Green OLEDs fabricated in our experiments showed the color coordinate of CIE(0.29, 0.65) and the maximum power efficiency of 7.3 lm/W at 12 V with the peak emission wavelength of 521 nm.

  • PDF

Crystal structure of 1-tert-butoxycarbonyl-4-[N-(tert-butoxycarbonyl)-N-(ethoxycarbonylmethyl)amino]-3-phenylsulfonylpyrrolidind (1-tert-butoxycarbonyl-4-[N-(tert-butoxycarbonyl)-N-(ethoxycarbonylmethyl)amino]-3-phenylsulfonylpyrrolidind의 결정구조해석)

  • 조소라;김문집
    • Korean Journal of Crystallography
    • /
    • v.6 no.1
    • /
    • pp.27-35
    • /
    • 1995
  • The crystal structure of 1-tert-butoxycarbonyl-4-[N-(tert-butoxycarbonyl)-N-(ethoxycarbonylmethyl)amino]-3-phenylsulfonylpyrrolidind [C24H36O8N2S] has been from single crystal x-ray diffraction study ; C24H36O8N2S triclinic, p1, a=11.363(8)Å, b=11.589(6)Å, c=11.013(10)Å,α=95.32(6)°,β=98.64(7)°,γ=79.57(5)°,V=1406.8(18)Å3, t=293K, Z=2, CuKα(λ=1.5418Å). The molecular structure was solved by diredt method and refined by full-matrix least squares to a final R=9.78% for 3621 unique observed [F≥4σ(F)] reflections and 703 paramenters.

  • PDF

A Study on N-Nitrosodimethylamine (NDMA) Formation According to pH Variation (pH 변화에 따른 N-Nitrosodimethylamine (NDMA) 생성에 대한 고찰)

  • Kim, Jong-O;Clevenger, Thomas
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.390-393
    • /
    • 2005
  • N-nitrosodimethylamine (NDMA), a potent carcinogenic, has recently been observed at drinking water supply systems in USA and Canada. The NDMA formation was studied as a function of chloramine concentration (0.001-0.1 mM) at a fixed dimethylamine (DMA) concentration of 0.05 mM at different initial pH (6, 7, 8). It was found that the NDMA formation rate varied with pH values. The formation of NDMA increased with increasing chloramine concentration and showed maximum yields of 2.4% and 1.6% at pH 7 and 8, respectively. A good correlation ($r^2>0.99$) was observed between the molar ratio (chloramine/DMA) and NDMA formation at pH 7 and 8. Linearity of the NDMA formation appeared to be related to chloramine concentrations.

The Interaction of Gallium Iodide with n-Propyl Iodide in Nitrobenzene and m-Xylene on High Vacuum (고진공 상태에서 니트로벤젠과 m-크실렌용액중 요오드화갈륨과 1-요오드화프로판과의 상호작용)

  • Kim Young Choul;Koo Deog Ja
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.301-307
    • /
    • 1991
  • The solubilities of the n-propyl iodide in nitrobenzene and m-xylene have been measured at 8$^{\circ}$, 15$^{\circ}$ and 25$^{\circ}C$ in the presence and the absence of gallium iodide. When gallium iodide does not exist in the system, the solubility of n-propyl iodide in m-xylene is greater than in nitrobenzene, indicating a stronger interaction of n-propyl iodide with m-xylene than that with nitrobenzene. It could be thought that n-propyl iodide forms unstable complex with gallium iodide in the presence of gaillium iodide in the system. This complex has been assumed in various ways and evaluated, that instability constant (K value) is relatively certain under the assumption of 1:1 complex, n-C$_3H_7I{\cdot}GaI_3$. Therefore, the complex would form the following equilibrium in the solution: n-C$_3H_7{\cdot}GaI _3{\rightleftharpoons}n-C_3H_7I+1/2Ga_2I_6$ the instability of the complex of n-propyl iodide with gallium iodide is compared with similar complexes of gallium iodide with methyl iodide. The changes of enthalpy, free energy and entropy for the dissociation of the complex are also calculated.

  • PDF

Dose-Response Relationship of Avian Influenza Virus Based on Feeding Trials in Humans and Chickens (조류인플루엔자 바이러스의 양-반응 모형)

  • Pak, Son-Il;Lee, Jae-Yong;Jeon, Jong-Min
    • Journal of Veterinary Clinics
    • /
    • v.28 no.1
    • /
    • pp.101-107
    • /
    • 2011
  • This study aimed to determine dose-response (DR) curve of avian influenza (AI) virus to predict the probability of illness or adverse health effects that may result from exposure to a pathogenic microorganism in a quantitative microbial risk assessment. To determine the parametric DR relationship of several strains of AI virus, 7 feeding trial data sets challenging humans (5 sets) and chickens (2 sets) for strains of H3N2 (4 sets), H5N1 (2 sets) and H1N1 (1 set) from the published literatures. Except for one data set (study with intra-tracheal inoculation for data set no. 6), all were obtained from the studies with intranasal inoculation. The data were analyzed using three types of DR model as the basis of heterogeneity in infectivity of AI strains in humans and chickens: exponential, beta-binomial and beta-Poisson. We fitted to the data using maximum likelihood estimation to get the parameter estimates of each model. The alpha and beta values of the beta-Poisson DR model ranged 0.06-0.19 and 1.7-48.8, respectively for H3N2 strain. Corresponding values for H5N1 ranged 0.464-0.563 and 97.3-99.4, respectively. For H1N1 the parameter values were 0.103 and 12.7, respectively. Using the exponential model, r (infectivity parameter) ranged from $1.6{\times}10^{-8}$ to $1.2{\times}10^{-5}$ for H3N2 and from $7.5{\times}10^{-3}$ to $4.0{\times}10^{-2}$ for H5N1, while the value was $1.6{\times}10^{-8}$ for H1N1. The beta-Poisson DR model provided the best fit to five of 7 data sets tested, and the estimated parameter values in betabinomial model were very close to those of beta-Poisson. Our study indicated that beta-binomial or beta-Poisson model could be the choice for DR modeling of AI, even though DR relationship varied depending on the virus strains studied, as indicated in prior studies. Further DR modeling should be conducted to quantify the differences among AI virus strains.

Studies on the Citric Acid Fermentation with Fungi (Part III) Citric Acid Fermentation with Selected Strains (사상균에 의한 구연산발효에 관한 연구 (제III보) 선정균에 의한 구연산발효)

  • 성낙계;김명찬;심기환;정덕화
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.3
    • /
    • pp.181-191
    • /
    • 1980
  • For the purpose of studies on the citric acid production, some experiments were carried out with isolated strains. The results obtained were as follows. 1) The optimal culture media of the strain M-80 in surface culture contained 140g of sucrose, 3.0g of (N $H_4$)$_2$S $O_4$, 1.5g of K $H_2$P $O_4$, 0.2g of MgS $O_4$.7$H_2O$, 3.0mg of F $e^{++}$, 1.0mg of Z $n^{++}$, 0.5N HCI to a pH of 5.0 and distilled water to 1.0 liter; and that of the strain M-315 in surface culture contained 140g of sucrose, 2.0g of N $H_4$N $O_3$, 1.0g of K $H_2$P $O_4$, 0.25g of MgS $O_4$. 7$H_2O$, 2.0mg of F $e^{++}$, 2.0mg of Z $n^{++}$, 0.05mg of C $u^{++}$, 0.5N HCI to a pH of 4.5 and distilled water to 1.0 liter. While that of the strain M-315 in submerged culture contained 140g of sucrose, 2.5g of N $H_4$N $O_3$, 1.5g of K $H_2$P $O_4$, 0.3g of MgS $O_4$. 7$H_2O$, 3.0mg of F $e^{++}$, 0.1mg of C $u^{++}$, 0.5N HCI to a pH of 4.5 and distilled water to 1.0 liter. The optimal temperature and size of inoculum were mostly 28-3$0^{\circ}C$, 10$^{7}$ -10$^{8}$ spores/50ml, respectively. 2) Through the course of citric acid production, the growth of strains had nearly been completed, pH value was rapidly decreased below 2.0 and the content of sugar was also reduced, while the accumulation of citric acid in media was remarkably begun in about 3-4 days. The yields of citric acid generally reached the maximum level in 8-10 days in surface or submerged fermentation process. 3) Methanol was effective citric acid production when they were added to fermentation media. In the case of surface culture, by addition of 2% (strain M-80), 3% (strain M-315), the yields of citric acid was increased 6.5%, 20.6%, respectively and 5.0% yield was increased by addition of 3% methanol in submerged culture media of the strain M-315. 4) Chromatography analysis of culture broth after fermentation under optimal culture conditions detected that the majority of acid in media was citric acid. 72.1mg/ml, 98.1mg/ml, of citric acid were determined in surface culture media by strains of M-80, M-315, and 59.8 mg/ml of citric acid was contained in the submerged culture media by the strain M-315. strain M-315.

  • PDF

The Crystal and Molecular Structure of Sodium Sulfisoxazole hexahydrate (Sodium Sulfisoxazole Hexahydrate의 결정 및 분자구조와 수소결합에 관한 연구)

  • Young Ja Park;Chung Hoe Koo
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.19-34
    • /
    • 1976
  • The crystal structure of sodium sulfisoxazole hexahydrate, $C_{11}H_{12}N_3O_3SNa{\cdot}6H_2O$,has been determined by X-ray diffraction method. The compound crystallizes in the monoclinic space group $$P2_1}c$$ with a = 15.68(3), b = 7.70(2), c = 17.94(4)${\AA}$, ${\beta}$ = $118(2)^{\circ}$ and Z = 4. A total of 1717 observed reflections were collected by the Weissenberg method with $CuK{\alpha}$ radiation. Structure was solved by heavy atom method and refined by block-diagonal least-squares methods to the R value of 0.14. The conformational angle formed by the S-C(l) bond with that of N(2)-C(7), when the projection in taken along the S-N(2), is $73^{\circ}.$ The benzene ring is planar and makes an angle of $60^{\circ}$ with the plane of the isoxazole ring, which is also planar. The sodium atom has a distorted octahedral coordination of N(l) and five oxygen atoms from hydrate molecules. Sodium sulfisoxazole hexahydrate shows fourteen different hydrogen bondings in the crystal. These are six $O-H{\cdots}O-H bonds, three $O-H{\cdots}O$ bonds, two $O-N{\cdots}N,$ one $N-H{\cdots}O,O-H{\cdots}N,N-H{\cdots}O-H$ bond, with the distances in the range of 2.71 to $3.04{\AA}.$.

  • PDF

Kinetics and Mechanism of the Hydrolysis of N-(Benzenesulfonyl) benzimidoyl Chlorides

  • Kim, Tae-Rin;Kwon, Hyo-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.157-160
    • /
    • 1988
  • The rates of hydrolysis of N-(benzenesulfonyl) benzimidoyl chlorides (p-H, $p-CH_3,\;p-CH_3,\;p-NO_2\;and m-NO_2$) have been measured by UV spectrometry in 60% methanol-water at $25^{\circ}C$ and a rate equation which can be applied over wide pH range was obtained. Below pH 7.00, the substituent effect on the hydrolysis rate of N-(benzenesulfonyl) benzimidoyl chloride was found to conform to the Hammett ${\sigma}$ constant with ${\rho}$ = -0.91, whereas above pH 9.00, with ${\rho}$ = 0.94. On the basis of the rate equation obtained and the effect of solvent, substituents and salt, the following reaction mechanism were proposed; below pH 7.00, the hydrolysis of N-(benzenesulfonyl) benzimidoyl chloride proceeds by $S_N1$ mechanism, however, above pH 9.00, the hydrolysis is initiated by the attack of the hydroxide ion and in the range of pH 7.00-9.00, these two reactions occur competitively.

Synthesis and Aminolysis of N,N-Diethyl Carbamic Ester of HOBt Derivatives

  • Khattab, Sherine Nabil;Hassan, Seham Yassin;Hamed, Ezzat Awad;Albericio, Fernando;El-Faham, Ayman
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2010
  • The reaction of N,N-diethyl carbamates of 1H-[1,2,3]triazolo[4,5-b]pyridin-1-ol (4-HOAt) 7, 3H-[1,2,3]triazolo[4,5-b]pyridin-3-ol (7-HOAt) 8, 1H-benzo[d][1,2,3]triazol-1-ol (HOBt) 9, 6-chloro-1H-benzo[d][1,2,3]triazol-1-ol (Cl-HOBt) 10, 6-(trifluoromethyl)-1H-benzo[d][1,2,3]triazol-1-ol ($CF_3$-HOBt) 11, and 6-nitro-1H-benzo[d][1,2,3]triazol-1-ol ($NO_2$-HOBt) 12 with morpholine and piperidine in $CH_3CN$ underwent acyl nucleophilic substitution to give the corresponding carboxamide derivatives. The reactants and products were identified by elemental analysis, IR and NMR. We measured the kinetics of these reactions spectrophotometrically in $CH_3CN$ at a range of temperatures. The rates of morpholinolysis and piperidinolysis were found to fit the Hammett equation and correlated with $\sigma$-Hammett values. The values were 1.44 - 1.21 for morpholinolysis and 1.95 - 1.72 for piperidinolysis depending on the temperature. The $Br{\phi}$nsted-type plot was linear with a $\beta_lg = -0.49 \pm 0.02$ and $-0.67 \pm 0.03$. The kinetic data and structure-reactivity relationships indicate that the reaction of 9-12 with amines proceeds by a concerted mechanism. The deviation from linearity of the correlation ${\Delta}H^#$ vs. ${\Delta}S^#$ and plot of $logk_{pip}$ vs. $logk_{morph}$ and $Br{\phi}$nsted-type correlation indicate that the reactions of amines with carbamates 7 and 8 is attributed to the electronic nature of their leaving groups.

Crystal Structure of N,N'-di-tert-butoxycabonyl-2, 7-diazabicyclo[3.3.0]oct-4-ene. (N,N'-di-tert-butoxycabonyl-2,7-diazabicyclo[3.3.0]oct-4-ene의 결정구조)

  • 김문집;이재혁
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.132-137
    • /
    • 1997
  • The crystal structure of N,N'-di-tert-butoxycabonyl-2,7-diazabicyclo[3.3.0]oct-4-ene has been determined from single crystal x-ray diffraction study; C16H26N2O4, Triclinic, P1, a=11.119(1) Å, b=13.638(1) Å, c=6.214(1) Å, α=92.14(1)°, β=103.49(1)°, γ=73.35(1)°, V=877.4(2)Å3, T=293(2)K, Z=2, CuKα(λ=1.5418Å). The structure was solved by direct method and refined by full-matrix least squares to a final R=5.38% for 2389 unique observed F0>4σ(F0) reflections and 225 parameters.

  • PDF