• Title/Summary/Keyword: H2S sensing

Search Result 211, Processing Time 0.05 seconds

Solvent Sensing Properties of Thin Films Based on Zinc phthalocyanine (ZnPc) Compounds (Zinc phthalocyanine(ZnPc)화합물의 이용한 유기용제 센서)

  • Kim D.H.;Kang Y.G.;Kim J.H.;Roh S.C.;Kim H.J.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.26-29
    • /
    • 2005
  • In this paper, the solvent sensing properties of the metallophthalocyanine macrocyclic compounds(ZnPc) have been deposited as thin films by the spin-coated method and evaporated methods onto alumina substrates and quartz substrates. And then the spin-coated materials of Zinc phthalocyanine solutions blended with $N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,\;1-biphenyl-4,4'-diamine\;and/or\; Poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene]$ solutions. The influences of the blended metallophthalocyanine macrocyclic compounds on the resistance have been measured and analysed in five different vapour organic compounds.

  • PDF

Fast Responding Gas Sensors Using Sb-Doped SnO2 Nanowire Networks (Sb-첨가 SnO2 나노선 네트워크를 이용한 고속응답 가스센서)

  • Kwak, Chang-Hoon;Woo, Hyung-Sik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.302-307
    • /
    • 2013
  • The Sb-doped $SnO_2$ nanowire network sensors were prepared by thermal evaporation of the mixtures between tin and antimony powders. Pure $SnO_2$ nanowire networks showed high sensor resistance in air ($99M{\Omega}$), similar gas responses to 4 diffferent gases (5 ppm $C_2H_5OH$, CO, $H_2$, and trimethylamine), and very sluggish recovery speed (90% recovery time > 800 s). In contrast, 2 wt% Sb-doped $SnO_2$ showed the selective detection toward $C_2H_5OH$ and trimethylamine, relatively low resistance ($176k{\Omega}$) for facile measurement, and ultrafast recovery speed (90% recovery times: 6 - 18 s). The change of gas sensing charactersitics by Sb doping was discussed in relation to gas sensing mechanism.

A Fiber Optic Sensor for Determination of 2,4-Dichlorophenol Based on Oxygen Oxidation Catalyzed by Iron(III) Tetrasulfophthalocyanine

  • Tong, Yilin;Li, Dapeng;Huang, Jun;Zhang, Cong;Li, Kun;Ding, Liyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3307-3311
    • /
    • 2013
  • A new fiber optical sensor was developed for the determination of 2,4-dichlorophenol (DCP). The sensor was based on DCP oxidation by oxygen with the catalysis of iron(III) tetrasulfophthalocyanine (Fe(III)PcTs). The optical oxygen sensing film with $Ru(bpy)_3Cl_2$ as the fluorescence indicator was used to determine the consumption of oxygen in solution. A lock-in amplifier was used for detecting the lifetime of the oxygen sensing film by measuring the phase delay change of the sensor head. The different variables affecting the sensor performance were evaluated and optimized. Under the optimal conditions (i.e. pH 6.0, $25^{\circ}C$, Fe(III)PcTs concentration of 0.62 mg/mL), the linear detection range and response time of the sensor are $1.0{\times}10^{-6}-9.0{\times}10^{-6}$ mol/L and 250 s, respectively. The sensor displays high selectivity, good repeatability and stability, and can be used as an effective tool in analyzing DCP concentration in practical samples.

Gas Sensing Characteristics and Preparation of SnO2 Nano Powders (SnO2 나노 분말의 합성 및 가스 감응 특성)

  • Lee, Ji-Young;Yu, Yoon-Sic;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.589-593
    • /
    • 2011
  • [ $SnO_2$ ]nano powders were prepared by solution reduction method using tin chloride($SnCl_2{\cdot}2H_2O$), hydrazine($N_2H_4$) and NaOH. The $SnO_2$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and annealed at $300^{\circ}C$ in air, respectively. XRD patterns of the $SnO_2$ nano powders showed the tetragonal structure with (110) dominant orientation. The particle size of $SnO_2$ nano powders at the ratio of $SnCl_2:N_2H_4$+NaOH= 1:6 was about 60 nm. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box. Sensitivity of $SnO_2$ gas sensor to 5 ppm $CH_4$gas and 5 ppm $CH_3CH_2CH_3$ gas was investigated for various $SnCl_2:N_2H_4$+NaOH proportion. The highest sensitivity to $CH_4$ gas and $CH_3CH_2CH_3$ gas of $SnO_2$ sensors was observed at the $SnCl_2:N_2H_4$+NaOH= 1:8 and $SnCl_2:N_2H_4$+NaOH= 1:6, respectively. Response and recovery times of $SnO_2$ gas sensors prepared by $SnCl_2:N_2H_4$+NaOH= 1:6 was about 40 s and 30 s, respectively.

Hydrogen sensing of Nano thin film and Nanowire structured cupric oxide deposited on SWNTs substrate: A comparison

  • Hoa, Nguyen Duc;Quy, Nguyen Van;O, Dong-Hun;Wei, Li;Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.52.1-52.1
    • /
    • 2009
  • Cupric oxide (CuO) is a p-type semiconductor with band gap of ~1.7 eV and reported to be suitable for catalysis, lithium-copper oxide electrochemical cells, and gas sensors applications. The nanoparticles, plates and nanowires of CuO were found sensing to NO2, H2S and CO. In this work, we report about the comparison about hydrogen sensing of nano thin film and nanowires structured CuO deposited on single-walled carbon nanotubes (SWNTs). The thin film and nanowires are synthesized by deposition of Cu on different substrate followed by oxidation process. Nano thin films of CuO are deposited on thermally oxidized silicon substrate, whereas nanowires are synthesized by using a porous thin film of SWNTs as substrate. The hydrogen sensing properties of synthesized materials are investigated. The results showed that nanowires cupric oxide deposited on SWNTs showed higher sensitivity to hydrogen than those of nano thin film CuO did.

  • PDF

Tape-Type Liquid Leakage Film Sensor (액체누설 감지용 테이프형 필름센서)

  • Yu, D.K.;Kim, K.S.;Yub, H.K.;Han, G.H.;Jin, D.J.;Kim, J.H.;Han, S.H.;Cho, G.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.146-154
    • /
    • 2011
  • The adhesive-tape of a liquid leak film sensor including the alarm system is developed. The sensing film is composed of three layers such as base film layer, conductive line layer, and protection film layer. The thickness of film is 300~500 um, the width is 3.55 cm, and the unit length is 200 m. On the conductive line layer, three conducting lines and one resistive line are formulated by the electronic printing method with a conducting ink of silver-nano size. When a liquid leaks for the electricity to be conducted between the conductive line and the resistive line, the position of leakage is monitored by measuring the voltage varied according to the change of resistance between two lines. The error range of sensing position of 200 m film sensor is ${\pm}1m$.

Gas Sensing Mechanism of CuO/ZnO Heterojunction Gas Sensor (이종접합 가스센서의 가스감지기구)

  • Yi, S.H.;Chu, G.S.;Park, J.H.;Sung, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1114-1116
    • /
    • 1995
  • P/N(CuO/ZnO) Heterojunction gas sensors were made by 2-step sintering methods and its gas sensing property was measured by varying the injected gases and the operating temperatures. As the applied voltage was increased in air ambients, the current-voltage characteristics shown the ohmic properties. However, when the CO gas ambients, 500 ppm at $200^{\circ}C$, the current-voltage characteristics behaves like a rectifying diode s after 3 mins later and its conduction mechanism is discussed qualitatively for the first times.

  • PDF

Design of a CMOS DC-to-DC Converter for Portable Devices (휴대용 기기를 위한 CMOS DC-DC 변환기 설계)

  • O, N.G.;Lee, J.K.;Cho, I.H.;Jang, S.H.;Cha, C.H.;Yu, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.520-521
    • /
    • 2008
  • This paper describes a low voltage, low-power CMOS buck DC/DC converter, which has a simple common-gate current sensing circuit. It consumes low power because it includes less transistors than other converters which use operational amplifiers for current sensing. The designed DC-DC converter is fabricated in a 0.18um CMOS technology. A maximum efficiency of 88% has been obtained with the proposed circuit. It has $2V{\sim}3.7V$ input voltage range, $1V{\sim}2.5V$ output voltage range and maximum output current of 1000mA.

  • PDF