• Title/Summary/Keyword: H2 absorption

Search Result 1,833, Processing Time 0.026 seconds

Wide-Band Ultrasonic Spectroscopy in Albumin Aqueous Solution (단백질 알부민 수용액의 광대역 초음파 스펙트로스코피)

  • Kim, Jeong-Koo;Bae, Jong-Rim
    • Journal of radiological science and technology
    • /
    • v.30 no.2
    • /
    • pp.161-165
    • /
    • 2007
  • Ultrasonic absorption spectrum in bovine serum albumin aqueous solutions have been measured at $20^{\circ}C$ over the broad frequency range $0.2{\sim}1,000\;MHz$ at pH 7. The absorption spectrum observed at neutral pH was successfully analyzed with the distribution of relaxation time assuming a mirror-image curve of the Davidson-Cole function. This distribution function suggests that hydration of BSA molecules is responsible for the absorption.

  • PDF

evaluation of Performance Characteristic on Triple Effect Absorption Cycle (삼중효용 흡수사이클의 성능특성 평가)

  • 권오경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.782-791
    • /
    • 1998
  • This paper presents a computer simulation of five types of triple effect absorption cycles employ-ing the refrigerant absorbent combinations of NH3/LiNO3 low-pressure type NH3/LiNO3+H2O/LiBr binary two-stage type series flow cycle and two types of parallel flow cycle for H2O/LiBr. The absorption systems is investigated through cycle simulation to obtain the system characteristics with the cooling water inlet temperature approach temperature of absorber loss temperature of absorber and chilled water outlet temperature. The most important characteristic temperature of absorber and chilled water outlet temperature. The most important characteristic of NH3/LiNO3 low-pressure type and a NH3/LINO3+H2O/LiBr binary two-stage type is that it obtains a coefficient of performance higher than the sum of the performance coefficients of its part operating independently. As a result of this analysis the optimum designs and operating conditions were determined based on the operating conditions and the coefficient of performance.

  • PDF

Absorption Mechanism of Cefixime through the Nasal Cavity and Jejunum in Rats (흰쥐의 비강과 공장에서의 세픽심의 흡수기전)

  • Park, Gee-Bae;Roh, Hyun-Goo;Lee, Kwang-Pyo
    • YAKHAK HOEJI
    • /
    • v.38 no.2
    • /
    • pp.114-122
    • /
    • 1994
  • A study on the absorption mechanism of cefixime(CF), an oral ${\alpha}-amino$ group deficient cephalosporin antibiotic, has been undertaken through the rat jejunum and nasal cavity using an in situ simultaneous perfusion technique developed in our laboratory. CF was well absorbed in the jejunum and nasal cavity of rats at pH 5.0, but not at pH 7.0. CF absorption was studied over four orders of magnitude in concentration to determine saturability. Disappearance of CF in the perfusate followed first-order kinetics at all tested concentrations. The apparent first-order absorption rate constant was found to be dependent on the concentration over the range of $0.1\;mM{\sim}3\;mM$ in the jejunum and nasal cavity of rats. Inhibitors were added to determine the competitive inhibition of CF absorption. The presence of L-tyrosine, L-phenylalanine, alanine-alanine, glycine-glycine and cefadroxil produced the significant inhibition of CF absorption in the nasal cavity and jejunum. However, there was no evidence of the inhibition in the presence of cefazolin. In addition, The CF absorption in the nasal cavity and jejunum was inhibited significantly by ouabain and 2,4-dinitrophenol(DNP). This study suggested that CF is absorbed across the rat nasal cavity and jejunum by carrier-mediated transport mechanism and energy consuming system.

  • PDF

Experimental investigation of enhanced heat and mass transfer toy LiBr/$H_2O$ absorber (LiBr/$H_2O$계 흉수기의 흡수촉진에 관한 실험적 연구)

  • 설원실;권오경;윤정인
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.581-588
    • /
    • 1998
  • An experimental study of the absorption process of water vapor into Lithium Bromide solution was performed. For the purpose of development of high performance absorption chiller-heater utilizing Lithium Bromide solution as working fluid, the absorber is the most effective to improve the performance of an absorber because it requires the largest heat transfer area in an absorption chiller-heater system. This paper introduces bare tube and floral tube for the absorber of absorption chiller-heaters. floral tube has higher heat and mass transfer performance than bare tube conventionally used in absorbers and the it is expected to perform high heat and mass transfer. This paper will provide important information on the selection of absorber tubes in commercial absorption chiller -heaters.

  • PDF

Calculation of the Absorption Coefficient and Weighting Factor Expressing the Total Emissivity of Flame (화염의 총괄폭사 계수를 나타내는 급수계수 및 가중치의 계산)

  • 하만영;허병기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.121-130
    • /
    • 1986
  • Using the sbsorption coefficients and the weighting factors of the gray gas, the total emissivities of C $O_{2}$- $H_{2}$O and C $O_{2}$- $H_{2}$O- transient species-soot gas mixtures can be expressed by the following equation, [a numerical formula] Where, $a_{i}$ and $K_{i}$ represent the weighting factor and the absorption coeffient of i-gray gas respectively; L is the pathlength of the gas. This equation is widely used for the analyses of the radiation heat transfer in the combustors of internal combustion engines and in the furnace of external combustion engines. In this work, a simple calculation model of the weighting factor and the absorption coeffient of the above equation was developed. The weighting factors and the absorption coefficients of combustion products were calculated by applying the model to various kinds of fossil fuels such as coal and heavy oil. Then, the computed total emissivities for each fuel and pathlength were compared with measured and calculated values which have been already published in the literatures. The followings were the results obtained through the comparisons between the calculated emissivites and the published values; the developed model for the calculations of the weighting factor and the absorption coefficient of C $O_{2}$- $H_{2}$O and C $O_{2}$- $H_{2}$O- transient species-soot gas mixtures could be applied over the wide ranges of the temperature and the pathlength; the errors between the total emissivities calculted and the values published were maximum 10%, and average 1%, respectively.

Effect of Diameter and Length on the Absorption Performance in a Vertical Absorber Tube (수직형 흡수기 성능에 미치는 흡수기 전열관의 직경과 길이의 영향)

  • 서정훈;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1214-1222
    • /
    • 2001
  • The present study investigated the effect of diameter and length on the absorption performance of a vertical falling film type absorber using $LiBr-H_2$O solution of 60 wt%. The parameters were diameter of absorber (17.2, 23.4, 31.1 mm), length of absorber (771, 1150, 1528 mm), and film Reynolds numbers (50, 70, 90, 110, 130, 150). As the diameter of the absorber was increased, the absorption mass flux, Sherwood number, heat flux, and heat transfer coefficient were increased, in which Sherwood number and heat transfer coefficient were increased up to 13% and 30% respectively. As the length of the absorber was increased, the total absorption rate and heat transfer coefficient were increased by 37% and 35% respectively, while the absorption mass flux was decreased.

  • PDF

Simulation of the First Kind LiBr-H2O Absorption Heat Pump (제1종 LiBr-H2O 흡수식 열펌프의 시뮬레이션)

  • Huh, J.Y.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.11-26
    • /
    • 1990
  • The first kind LiBr -$H_2O$ absorption heat pump system was simulated and the performances of it were predicted. The elements of heat pump system, evaporator, absorber and generator were analysed by solving the energy balance equations and concentration equations which describe the reactions between working fluids. The results show that the temperature gain of absorber and condenser and the COP of the system are affected considerably by the operating conditions of heat pump system.

  • PDF

Preparation of Polyynes by the Laser Ablation of Graphite in Water and Organic Solvents

  • Shin, Seung-Keun;Park, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.597-600
    • /
    • 2012
  • Polyynes were formed by laser ablation of a graphite target in deionized water ($H_2O$ and $D_2O$) and various organic solvents such as acetonitrile, n-hexane, and c-hexane and were identified by analyzing ultraviolet (UV) absorption and Raman spectra. We assigned the major UV absorption peaks that coincided with the electronic transitions corresponding to linear polyyne chains. The UV absorption peak intensities of a polyyne solution decreased as the holding temperature of the solution increased. Also, the absorption spectra of polyynes obtained by laser ablation of a graphite target at different volume fractions of $H_2O$ and $D_2O$ were examined.

Absorption Spectroscopic Studies of Prodigiosin Extracted from Serratia Marcescens Strain (Serratia marcescens 균주로부터 추출한 Prodigiosin의 흡수분광학적 연구)

  • Park, Hee-Aurk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.355-361
    • /
    • 2019
  • The red pigment extracted from Serratia marcescens 2354 (ATCC 25419) was prodigiosin (PG), which was dissolved in methanol and measured for ultraviolet and visible light absorption spectra. It was the typical absorption spectrum of PG in an acid solution with ${\lambda}_{max}=537nm$. When the concentration of PG was increased from $1.0{\times}10-5M$ to $9.0{\times}10-5M$ in the methanol solution, the absorption intensity at 537 nm was increased, the absorption intensity at 467 nm was decreased, and the isosbestic point at 500 nm was observed. This phenomenon can be regarded as a result of reversible acid-base equilibrium reaction considering 537 nm and 467 nm of PG absorption band in acid and base solution respectively and isosbestic point of 500 nm. On the other hand, when the concentration of PG was reduced from $6.0{\times}10-4$ to $1.0{\times}10-4M$ in acetic acid buffer solution at pH 4.75, a new absorption band with ${\lambda}$ max at 500 nm appeared. This absorption band appears only in the aqueous solution of pH 4.75 and does not appear in the pure methanol solution of the same pH. This is due to the conversion of the PG molecule from the ${\alpha}$-isomer to the ${\beta}$-isomer by $H_2O$. In other words, it was confirmed that the color change of the PG can be caused by the concentration of the solution and the characteristics of the solvent.

Coupled Heat and Mass Transfer in Absorption of Water Vapor into LiBr-$H_2O$ Solution Flowing on Finned Inclined Surfaces

  • Seo, Taebeom;Cho, Eunjun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1140-1149
    • /
    • 2004
  • The absorption characteristics of water vapor into a LiBr-H$_2$O solution flowing down on finned inclined surfaces are numerically investigated in order to study the absorbing performances of different surface shapes of finned tubes as an absorber element. A three-dimensional numerical model is developed. The momentum, energy, and diffusion equations are solved simultaneously using a finite difference method. In order to obtain the temperature and concentration distributions, the Runge-Kutta and the Successive over relaxation methods are used. The flat, circular, elliptic, and parabolic shapes of the tube surfaces are considered in order to find the optimal surface shapes for absorption. In addition, the effects of the fin intervals and Reynolds numbers are studied. The results show that the absorption mainly happens near the fin tip due to the temperature and concentration gradient, and the absorbing performance of the parabolic surface is better than those of the other surfaces.