• 제목/요약/키워드: H1N1 influenza virus

검색결과 181건 처리시간 0.026초

신종플루 바이러스를 통한 인플루엔자 바이러스의 해석 및 전망 (Interpretation and Prospection of Influenza Virus through Swine-origin Influenza Virus)

  • 장경수
    • 대한임상검사과학회지
    • /
    • 제42권1호
    • /
    • pp.1-15
    • /
    • 2010
  • Swine influenza virus (SIV) or swine-origin influenza virus (S-OIV) is endemic in swine, and classified into influenza A and influenza C but not influenza B. Swine influenza A includes H1N1, H1N2, H3N1, H3N2 and H2N3 subtypes. Infection of SIV occurs in only swine and that of S-OIV is rare in human. What human can be infected with S-OIV is called as zoonotic swine flu. Pandemic 2009 swine influenza H1N1 virus (2009 H1N1) was emerged in Mexico, America and Canada and spread worldwide. The triple-reassortant H1N1 resulting from antigenic drift was contained with HA, NA and PB1 of human or swine influenza virus, PB2 and PA polymerase of avian influenza virus, and M, NP and NS of swine influenza virus, The 2009 H1N1 enables to transmit to human and swine. The symptoms and signs in human infected with 2009 H1N1 virus are fever, cough and sore throat, pneumonia as well as diarrhea and vomiting. Co-infection with other viruses and bacteria such as Streptococcus pneumoniae can occur high mortality in high-risk population. 2009 H1N1 virus was easily differentiated from seasonal flu by real time RT-PCR which contributed rapid and confirmed diagnosis. The 2009 H1N1 virus was treated with NA inhibitors such as oseltamivir (Tamiflu) and zanamivir (Relenza) but not with adamantanes such as amantadine and rimantadine. Evolution of influenza virus has continued in various hosts. Development of a more effective vaccine against influenza prototypes is needed to protect new influenza infection such as H5 and H7 subtypes to infect to multi-organ and cause high pathogenicity.

  • PDF

Post-pandemic influenza A (H1N1) virus detection by real-time PCR and virus isolation

  • Zaki, Ali Mohamed;Taha, Shereen El-Sayed;Shady, Nancy Mohamed Abu;Abdel-Rehim, Asmaa Saber;Mohammed, Hedya Said
    • 미생물학회지
    • /
    • 제55권1호
    • /
    • pp.25-32
    • /
    • 2019
  • Influenza A (H1N1) virus caused a worldwide pandemic in 2009-2010 and still remains in seasonal circulation. Continuous surveillance activities are encouraged in the post pandemic phase to watch over the trend of occurrence every year, this is better to be done by a rapid and sensitive method for its detection. This study was conducted to detect proportions of occurrence of influenza A virus (H1N1) in patients with influenza-like illness. Samples from 500 patients with influenza or influenza-like clinical presentation were tested by real-time reverse transcription polymerase chain reaction (RT-PCR) and virus tissue culture. Among the total 500 participants, 193 (38.6%) were females and 307 (61.4%) males. Seventy-one patients (14.2%) were positive for H1N1 virus infection with real-time RT-PCR while 52 (10.4%) were positive by tissue culture. Non-statistically significant relation was found between age and gender with the positivity of H1N1. Sensitivity and specificity of real-time RT-PCR was 98.08% and 95.54%, respectively, in comparison to virus isolation with accuracy 95.8%. This study showed that H1N1 virus was responsible for a good proportion of influenza during the post-pandemic period. Real-time RT-PCR provides rapidity and sensitivity for the detection of influenza A virus (H1N1) compared with virus isolation and thus it is recommended as a diagnostic tool.

2019년 국내에서 분리한 H1N2 돼지 인플루엔자바이러스 유전자 분석 및 이의 마우스에 대한 감염성 (Genetic Analysis of the 2019 Swine H1N2 Influenza Virus Isolated in Korean Pigs and Its Infectivity in Mice)

  • 장윤영;서상희
    • 생명과학회지
    • /
    • 제30권9호
    • /
    • pp.749-762
    • /
    • 2020
  • 돼지인플루엔자는 동물에서 사람에게 감염할 수 있는 인수공통전염병이다. 우리는 2019년 한국 돼지농장에서 호흡기 증상을 보이는 돼지에서 3주의 H1N2형 인플루엔자바이러스를 분리하였다. 유전자 분석결과, 이들 바이러스의 8개 유전자 중 PA 및 NP 유전자는 2009 대유행 H1N1 인플루엔자 유래였고, 나머지 유전자는 돼지에 유행하는 H3N2 및 H1N2 인플루엔자 유래 유전자를 가진 재조합 바이러스 이었다. 분리된 H1N2 바이러스를 마우스에 접종한 결과, 마우스는 17% 정도 체중이 감소하였고, 염증 세포들이 침윤한 간질성 폐렴 증상을 보였다.

Comparative Study of the Nucleotide Bias Between the Novel H1N1 and H5N1 Subtypes of Influenza A Viruses Using Bioinformatics Techniques

  • Ahn, In-Sung;Son, Hyeon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권1호
    • /
    • pp.63-70
    • /
    • 2010
  • Novel influenza A (H1N1) is a newly emerged flu virus that was first detected in April 2009. Unlike the avian influenza (H5N1), this virus has been known to be able to spread from human to human directly. Although it is uncertain how severe this novel H1N1 virus will be in terms of human illness, the illness may be more widespread because most people will not have immunity to it. In this study, we compared the codon usage bias between the novel H1N1 influenza A viruses and other viruses such as H1N1 and H5N1 subtypes to investigate the genomic patterns of novel influenza A (H1N1). Totally, 1,675 nucleotide sequences of the hemagglutinin (HA) and neuraminidase (NA) genes of influenza A virus, including H1N1 and H5N1 subtypes occurring from 2004 to 2009, were used. As a result, we found that the novel H1N1 influenza A viruses showed the most close correlations with the swine-origin H1N1 subtypes than other H1N1 viruses, in the result from not only the analysis of nucleotide compositions, but also the phylogenetic analysis. Although the genetic sequences of novel H1N1 subtypes were not exactly the same as the other H1N1 subtypes, the HA and NA genes of novel H1N1s showed very similar codon usage patterns with other H1N1 subtypes, especially with the swine-origin H1N1 influenza A viruses. Our findings strongly suggested that those novel H1N1 viruses seemed to be originated from the swine-host H1N1 viruses in terms of the codon usage patterns.

돼지 인플루엔자 바이러스의 혈청학적 역학조사 및 유전학적 분석 (Sero-epidemiology and genetic characterization of swine influenza virus)

  • 류영수;김로미
    • 대한수의학회지
    • /
    • 제38권1호
    • /
    • pp.53-63
    • /
    • 1998
  • Total of 1085 swine sera (1996-1997) from nation-wide were tested for the presence of antibodies to influenza A virus. Fifty nine percent of the tested sera showed seropositive by HI test. Positive sera consisted of 24--- of H3, 15--- of H1, and 20--- of the sample had both antibodies, respectively. Sera collected from various region represented 7~27--- seropositivity to H1N1, 15~25--- to H3N2, respectively. Swine influenza field isolate from nasal swab was characterized antigenically and genetically to elucidate its relatedness with other known strains of influenza A virus. The study was focused on the HA gene which is related to pathogenecity and antigenic variability of the influenza virus. By RT-PCR using influenza A/H1N1 specific primers, influenza virus H1N1 specific DNA fragment was amplified from A/Swine/Iowa/15/30(H1N1), US field isolate but not in H3N2 strain. PCR products were sequenced by dideoxy chain termination method to determine nucleotide homology with other strains of influenza A virus. The US field isolate and A/Swine/Indiana/1726/88 strain had 97--- of nucleotide homology and 98--- of amino acid homology. Based on the results obtained from this experiment, the field isolate was genetically related to A/Swine/Indiana/1726/88 and had higher homology with A/Swine/Indiana/1726/88 than with classical swine influenza virus, A/Swine/Iowa/15/30. The field isolate had no amino acid changes at the antigenic site compare to that of the A/Swine/Indiana/1726/88. The proteolytic enzyme cleavage site between HA1 and HA2 had no alteration and the amino acid arginine was intact. There is no evidence has been found that the field isolate has genetic shift or genetic drift which might altered antigenic determinant.

  • PDF

인플루엔자 연관 폐렴 (Influenza Associated Pneumonia)

  • 김재열
    • Tuberculosis and Respiratory Diseases
    • /
    • 제70권4호
    • /
    • pp.285-292
    • /
    • 2011
  • After an outbreak of H1N1 influenza A virus infection in Mexico in late March 2009, the World Health Organization raised its pandemic alert level to phase 6, and to the highest level in June 2009. The pandemic H1N1/A influenza was caused by an H1N1 influenza A virus that represents a quadruple reassortment of two swine strains, one human strain, and one avian strain of influenza. After the first case report of H1N1/A infection in early May 2009, South Korea was overwhelmed by this new kind of influenza H1N1/A pandemic, which resulted in a total of 700,000 formally reported cases and 252 deaths. In this article, clinical characteristics of victims of H1N1/A influenza infection, especially those who developed pneumonia and those who were cared for in the intensive care unit, are described. In addition, guidelines for the treatment of H1N1/A influenza virus infection victims in the ICU, which was suggested by the Korean Society of Critical Care Medicine, are introduced.

Red Ginseng-containing diet helps to protect mice and ferrets from the lethal infection by highly pathogenic H5N1 influenza virus

  • Park, Eun Hye;Yum, Jung;Ku, Keun Bon;Kim, Heui Man;Kang, Young Myong;Kim, Jeong Cheol;Kim, Ji An;Kang, Yoo Kyung;Seo, Sang Heui
    • Journal of Ginseng Research
    • /
    • 제38권1호
    • /
    • pp.40-46
    • /
    • 2014
  • The highly pathogenic (HP) H5N1 influenza virus is endemic in many countries and has a great potential for a pandemic in humans. The immune-enhancing prowess of ginseng has been known for millennia. We aimed to study whether mice and ferrets fed with Red Ginseng could be better protected from the lethal infections of HP H5N1 influenza virus than the infected unfed mice and ferrets. We fed mice and ferrets with Red Ginseng prior to when they were infected with HP H5N1 influenza virus. The mice and ferrets fed with a 60-day diet containing Red Ginseng could be protected from lethal infections by HP H5N1 influenza virus (survival rate of up to 45% and 40%, respectively). Interferon-${\alpha}$ and -${\gamma}$ antiviral cytokines were significantly induced in the lungs of mice fed Red Ginseng, compared to mice fed an unsupplemented diet. These data suggest that the diet with the immune-enhancing Red Ginseng could help humans to overcome the infections by HP H5N1 influenza virus.

1998년도 부산지역에서의 Influenza 바이러스의 분리 (Isolation and Identification of Influenza Virus from Pusan in 1998)

  • 조경순;김영희
    • 생명과학회지
    • /
    • 제9권3호
    • /
    • pp.289-292
    • /
    • 1999
  • 1998년 부산지역에서 호흡기 환자의 인후 가검물로부터 분리된 influenza 바이러스 다음과 같은 양사을 볼 수 있었다. 1.분리된 바이러스는 influenza A/Sydney/05/97-like(H3N2)형과 influenza A/Beijing/262/95-like(H1N1)형으로 동정되었다.2.바이러스분리는 4월에서 9월까지를 제외한 모든 달에서 이루어 졌으며 특히 12월에는 집중적인 양상을 보였다.3.연령별로 본 바이러스의 분리는 1세에서 68세까지 전 연령층에서 나타났으며 10세 이하가 가장 높은 분리율을 나타내었다.4.바이러스 분리 비율은 남녀가 1:1.2의 비율로 나타났다.5.분리 바이러스는 MDCK 세포에서 세포병변이 관찰 되었다.6.influenza 바이러스를 Negative staining으로 염색하여 전자현미경으로 관찰한 결과 원형의 바이러스로 in-fluenza A/Sydney/05/97-like(H3N2)는 130 nm,influenza A/Beijing/262/95-like(H1N1) 형은 145nm의 크기로 나타났다.

  • PDF

경남지역 내 돼지에서의 swine influenza virus (H1N1, H3N2) 감염률 조사 (Seroprevalence survey of swine influenza virus (H1N1, H3N2) in pigs in Gyeongnam area)

  • 장은희;하도윤;박동엽;이국천;허정호
    • 한국동물위생학회지
    • /
    • 제34권3호
    • /
    • pp.195-200
    • /
    • 2011
  • Swine influenza is an acute respiratory disease prevalent in pig-growing areas all around the world and plays the roles of an intermediate host to be transmitted to mammals including human beings through a genetic recombination with the avian influenza virus. Recognizing that people could be contracted with swine influenza, this study set out to investigate the seroprevalence of individual and multiple infections with two subtypes (H1N1 and H3N2) of the swine influenza virus in pig farms in the Gyeongnam region according to age, area, and season, as well as to provide basic data for the prevention and control of swine influenza. Used in the study were total 904 swine sera that were not vaccinated against the influenza gathered from the pig farms in the Gyeongnam region from November, 2009 to October, 2010. HerdChek SIV (H1N1, H3N2) ELISA kit (IDEXX Laboratories, USA) was used for antibody testing against swine influenza. The test results show that 370 sera (40.9%) were infected with either H1N1 or H3N2 with 37.3% (337 sera) being contracted with H1N1, 13.1% (118 sera) with H3N2, and 9.4% (85) with both H1N1 and H3N2.

The 2009 H1N1 Pandemic Influenza in Korea

  • Kim, Jae Yeol
    • Tuberculosis and Respiratory Diseases
    • /
    • 제79권2호
    • /
    • pp.70-73
    • /
    • 2016
  • In late March of 2009, an outbreak of influenza in Mexico, was eventually identified as H1N1 influenza A. In June 2009, the World Health Organization raised a pandemic alert to the highest level. More than 214 countries have reported confirmed cases of pandemic H1N1 influenza A. In Korea, the first case of pandemic influenza A/H1N1 infection was reported on May 2, 2009. Between May 2009 and August 2010, 750,000 cases of pandemic influenza A/H1N1 were confirmed by laboratory test. The H1N1-related death toll was estimated to reach 252 individuals. Almost one billion cases of influenza occurs globally every year, resulting in 300,000 to 500,000 deaths. Influenza vaccination induces virus-neutralizing antibodies, mainly against hemagglutinin, which provide protection from invading virus. New quadrivalent inactivated influenza vaccine generates similar immune responses against the three influenza strains contained in two types of trivalent vaccines and superior responses against the additional B strain.