• Title/Summary/Keyword: H-Pile

Search Result 232, Processing Time 0.022 seconds

Effect of Coating Layer Hardness on Frictional Characteristics of Diesel Engine Piston Ring (디젤엔진 피스톤 링 코팅 층의 경도에 따른 마찰특성)

  • Jang, J.H.;Joo, B.D.;Lee, H.J.;Kim, E.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.465-470
    • /
    • 2009
  • The frictional behaviors of Cermets/Cr-Ceramics and Cu-Al coatings of piston ring were investigated. Friction tests were carried out by pin-on-disk test and materials properties of coating layer were analyzed by nano indentation tester. The effect of surface roughness of cylinder liner on the friction coefficient was analyzed. This study provided tribological data of hard and soft piston ring coatings against cylinder liner. The surface roughness does exert an influence on the average friction coefficient, with smoother surfaces generally yielding lower friction coefficients. In case of hard-coating, the scratch depth, width and pile-up height had close relationship with hardness. So the scratch width, depth and pile-up height increases with decreasing friction coefficient. But in case of soft-coating, the friction coefficients are strongly dependent on the morphological characteristics such as, scratch depth, width, pile-up height and elastic modulus.

Steel Pile Corrosion in Potential Acid Sulfate Soil (잠재성 특이산성토중 강관말뚝의 부식)

  • Lee, Seung-Heon;Park, Mi-Hyeun;Yoon, Kyung-Sup
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.559-562
    • /
    • 2003
  • The results and discussions of surveyed case site at constructed steel pile in potential acid sulfate soil were as follows. Topography at surveyed site was local alluvial valley and that site soils was classified as BanGog and YuGye series as detailed soil surveyed results in RDA and soil texture was Clay/Clay Loam. Soils pH was neutral, which was average 7.5 but much decreased to average 4.2 after $H_2O_2$ treatment. Organic matter and sulfate ions contents were very rich. The corrosion was severe at ground water fluctuation depth. Deposits colored black were attached to steel pile surface, which because of violent reaction in treatment HCI solution, were guessed as corrosion products (FeS) reduced by sulfate reducing bacteria(SRB). Consequently, main cause was thought microbiologically induced corrosion at this site where there is ground water fluctuation occurring oxidation and reduction reactions in turn and the soil is potential acid sulfate soil.

  • PDF

Assessment of Thermal Stress in Temporary Bridge (가교량의 온도응력 평가)

  • Park, Young Hoon;Lee, Seung Yong;Byun, Yun Joo;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.1-10
    • /
    • 1998
  • The temporary steel bridges which are constructed for detour and constructional expediency are consisted of H-beams(as superstructure) and H-piles(as substructure). Because these members are fastened by high-tension bolts, there are no expansion joints in these bridges. So, these kinds of bridges have no system which can relieve the excessive thermal stress. In this investigation, monitoring system was set up at temporary steel bridge and stress and temperature changes of H-beam are monitored. From these measured data, it is analyzed that the relationship between ambient and main-girder temperature change, between temperature and stress change. With these analyses, it is resulted that the thermal stress take main part of stress variation in this bridge and the restrain of thermal longitudinal displacement of H-pile. In addition, because the connection part of H-beam to H-beam is weak in the continuous spans, the sub-modelling is well apt to reflect the effect of thermal stress.

  • PDF

Non-linear analysis of pile groups subjected to lateral loads using 'p-y' curve

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.57-73
    • /
    • 2012
  • The paper presents the analysis of two groups of piles subjected to lateral loads incorporating the non-linear behaviour of soil. The finite element method is adopted for carrying out the parametric study of the pile groups. The pile is idealized as a one dimensional beam element, the pile cap as two dimensional plate elements and the soil as non-linear elastic springs using the p-y curves developed by Georgiadis et al. (1992). Two groups of piles, embedded in a cohesive soil, involving two and three piles in series and parallel arrangement thereof are considered. The response of the pile groups is found to be significantly affected by the parameters such as the spacing between the piles, the number of piles in a group and the orientation of the lateral load. The non-linear response of the system is, further, compared with the one by Chore et al. (2012) obtained by the analysis of a system to the present one, except that the soil is assumed to be linear elastic. From the comparison, it is observed that the non-linearity of soil is found to increase the top displacement of the pile group in the range of 66.4%-145.6%, while decreasing the fixed moments in the range of 2% to 20% and the positive moments in the range of 54% to 57%.

Soil -structure interaction analysis of a building frame supported on piled raft

  • Chore, H.S.;Siddiqui, M.J.
    • Coupled systems mechanics
    • /
    • v.5 no.1
    • /
    • pp.41-58
    • /
    • 2016
  • The study deals with physical modeling of a typical building frame resting on pile raft foundation and embedded in cohesive soil mass using finite element based software ETABS. Both- the elements of superstructure and substructure (i.e., foundation) including soil is assumed to remain in elastic state at all the time. The raft is modelled as a thin plate and the pile and soils are treated as interactive springs. Both- the resistance of the piles as well as that of raft base - are incorporated into the model. Interactions between raft-soil-pile are computed. The proposed method makes it possible to solve the problems of uniformly and large non-uniformly arranged piled rafts in a time saving way using finite element based software ETABS. The effect of the various parameters of the pile raft foundation such as thickness of raft and pile diameter is evaluated on the response of superstructure. The response included the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase displacement and increase the absolute maximum positive and negative moments. The effect of the soil- structure interaction is observed to be significant for the type of foundation and soil considered in the present study.

Interactive analysis of a building fame resting on pile foundation

  • Chore, H.S.
    • Coupled systems mechanics
    • /
    • v.3 no.4
    • /
    • pp.367-384
    • /
    • 2014
  • The study deals with the physical modeling of a typical single storeyed building frame resting on pile foundation and embedded in cohesive soil mass using the finite element based software SAP-IV. Two groups of piles comprising two and three piles, with series and parallel arrangement thereof, are considered. The slab provided at top and bottom of the frame along with the pile cap is idealized as four noded and two dimensional thin shell elements. The beams and columns of the frame, and piles are modeled using two noded one dimensional beam-column element. The soil is modeled using closely spaced discrete linear springs. A parametric study is carried out to investigate the effect of various parameters of the pile foundation, such as spacing in a group and number of piles in a group, on the response of superstructure. The response considered includes the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase the displacement in the range of 38 -133% and to increase the absolute maximum positive and negative moments in the column in the range of 2-12% and 2-11%. The effect of the soil- structure interaction is observed to be significant for the type of foundation and soil considered in this study. The results obtained are compared further with those of Chore et al. (2010), wherein different idealizations were used for modeling the superstructure frame and sub-structure elements (foundation). While fair agreement is observed in the results in either study, the trend of the results obtained in both studies is also same.

Analytical model of isolated bridges considering soil-pile-structure interaction for moderate earthquakes

  • Mohammad Shamsi;Ehsan Moshtagh;Amir H. Vakili
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.529-545
    • /
    • 2023
  • The coupled soil-pile-structure seismic response is recently in the spotlight of researchers because of its extensive applications in the different fields of engineering such as bridges, offshore platforms, wind turbines, and buildings. In this paper, a simple analytical model is developed to evaluate the dynamic performance of seismically isolated bridges considering triple interactions of soil, piles, and bridges simultaneously. Novel expressions are proposed to present the dynamic behavior of pile groups in inhomogeneous soils with various shear modulus along with depth. Both cohesive and cohesionless soil deposits can be simulated by this analytical model with a generalized function of varied shear modulus along the soil depth belonging to an inhomogeneous stratum. The methodology is discussed in detail and validated by rigorous dynamic solution of 3D continuum modeling, and time history analysis of centrifuge tests. The proposed analytical model accuracy is guaranteed by the acceptable agreement between the experimental/numerical and analytical results. A comparison of the proposed linear model results with nonlinear centrifuge tests showed that during moderate (frequent) earthquakes the relative differences in responses of the superstructure and the pile cap can be ignored. However, during strong excitations, the response calculated in the linear time history analysis is always lower than the real conditions with the nonlinear behavior of the soil-pile-bridge system. The current simple and efficient method provides the accuracy and the least computational costs in comparison to the full three-dimensional analyses.

The Characteristics of Axial Bearing Capacity for the High Strength H-pile (고강도 H말뚝의 연직 지지력 특성)

  • 신방웅;여병철
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.135-143
    • /
    • 2000
  • 고강도 H말뚝은 다른 말뚝에 비해 관입성이 우수하며, 경제적으로 시공이 가능하여 도로공사 및 건축공사의 기초말뚝으로 광범위하게 전세계적으로 사용되어지고 있다. 따라서 본 논문에서는 고강도 H말뚝, 강관말뚝 및 PHC 말뚝에 정재하시험과 동재하시험을 실시하여 허용지지력을 비교 분석하였으며, 각각의 말뚝에 대한 동재하시험을 통해 시간경과효과를 평가하였다. 정재하시험과 동재하시험을 비교 분석한 결과 하중-침하곡선이 유사한 것으로 조사되었다. 또한 고강도 H말뚝, 강관 말뚝, PHC 말뚝이 지반내에 향타되었을 때의 허용지지력은 시간이 경과함에 따라 증가하는 것으로 평가되었다. 재하시험 결과 시간경과효과로 인해 지반의 허용지지력이 상승됨을 알 수 있어 앞으로 기초말뚝 설계시 참고자료로 활용할 수 있을 것으로 사료된다.

  • PDF

Non linear soil structure interaction of space frame-pile foundation-soil system

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.95-110
    • /
    • 2014
  • The study deals with physical modeling of space frame-pile foundation and soil system using finite element models. The superstructure frame is analyzed using complete three-dimensional finite element method where the component of the frame such as slab, beam and columns are descretized using 20 node isoparametric continuum elements. Initially, the frame is analyzed assuming the fixed column bases. Later the pile foundation is worked out separately wherein the simplified models of finite elements such as beam and plate element are used for pile and pile cap, respectively. The non-linear behaviour of soil mass is incorporated by idealizing the soil as non-linear springs using p-y curve along the lines similar to that by Georgiadis et al. (1992). For analysis of pile foundation, the non-linearity of soil via p-y curve approach is incorporated using the incremental approach. The interaction analysis is conducted for the parametric study. The non-linearity of soil is further incorporated using iterative approach, i.e., secant modulus approach, in the interaction analysis. The effect the various parameters of the pile foundation such as spacing in a group and configuration of the pile group is evaluated on the response of superstructure owing to non-linearity of the soil. The response included the displacement at the top of the frame and bending moment in columns. The non-linearity of soil increases the top displacement in the range of 7.8%-16.7%. However, its effect is found very marginal on the absolute maximum moment in columns. The hogging moment decreases by 0.005% while sagging moment increases by 0.02%.

Experimental and numerical study on performance of long-short combined retaining piles

  • Xu, Chang J.;Ding, Hai B.;Luo, Wen J.;Tong, Li H.;Chen, Qing S.;Deng, Jian L.
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.255-265
    • /
    • 2020
  • Laboratory tests are conducted to investigate the performance of retaining system with different combinations of long-short piles. Numerical analysis implemented using ABAQUS are verified by comparing numerical results with measured data. By performing numerical studies, the horizontal displacement of piles, heave of excavation bottom and bending moment of pile for various pile system with different pile lengths are investigated. Results show that long piles share higher bending moments than short piles. The increase in the number of short piles leads to a slight increase in the heave at excavation bottom for long-short pile retaining system. Retaining system with different long and short pile combinations have greater effects on the horizontal displacement of pile above the excavation bottom, compared to its counterparts below excavation bottom. For a given length of long pile, the bending moment and displacement of piles increase with the decrease in length of short piles, while the increasing rate of maximum moment of retaining pile system is insignificant. Results highlight that a reliable and economical pile retaining system can be designed by optimizing the number and length of short piles, provided that the working performance of retaining structures above excavation bottom meets the design requirement in practice.