• Title/Summary/Keyword: H-킬레이트

Search Result 120, Processing Time 0.027 seconds

Studies on the Chelating Agent-Impregnated Resins for the Adsorption and Separation of Metal Ions (Ⅰ). 8-Hydroxyquinoline-Impregnated Resins (금속이온 흡착 및 분리를 위한 킬레이트 시약-침윤수지에 관한 연구 (제1보). 8-Hydroxyquinoline-침윤수지)

  • Dai Woon Lee;Tack Hyuck Lee;Kwang Ha Park
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.353-360
    • /
    • 1983
  • The adsorption behavior of 8-hydroxyquinoline (8HQ) on Amberlite XAD-4 and-7 resins was investigated by measuring its distribution coefficients under various experimental conditions, such as shaking time, pH and concentration of methanol in the medium. The application of 8HQ-impregnated-XAD resins for the absorption and separation of metal ions was studied. The maximum adsorption of 8HQ on XAD resins was observed in the 30% methanol solution having pH range from 6.0 to 9.0. The impregnation capacities of XAD resins for 8HQ were 3.81${\times}$10-2mmol, 8HQ/g, XAD-4 resins and 2.60${\times}$10-2mmol, 8HQ/g, XAD-7 resin, respectively. The 8HQ-impregnated-XAD resins were stable in pH range from 6.0 to 10.0 and the amount of 8HQ leached from XAD-4 resin by eluting with hydrochloric acid(above 5M) was negligible. The optimum pH range for the adsorption of metal ions on 8HQ-impregnated XAD resin was also 6.0 to 10.0, and the adsorption mole ratio of metal ion to 8HQ were 1 : 2 for Cu(II), Cd(II) and Ni(II), and 1 : 3 for Fe(III) at the above pH range. It was found that the absorbed metal ions on 8HQ-impregnated-XAD resins were recovered quantitatively with 5M HCl and 8HQ-impregnated-XAD-4 resin could be reusable over 5 times without decrease in its impregnation capacity.

  • PDF

Sol-Gel Template Synthesis and Characterization of PT, PZ and PZT Nanotubes (PT, PZ와 PZT나노튜브의 졸-겔 형판합성과 특성)

  • Jang, Gi Seok;Bernadette A. Hernandez;Ellen R. Fisher;Peter K. Dorhout
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.242-251
    • /
    • 2002
  • We report the synthesis and characterization of the perovskite nanotubes made by sol-gel template syn-thesis.Both lead titanate (PbTiO3 : PT), lead zirconate (PbZrO3 : PZ) and lead zirconium titanate (PbZrO3 -PbTiO3 : PZT) solid solution nanotubes were prepared with a chelate sol-gel of titanium isopropoxide (Ti(OPri)4 ), zirconium tet-rabutoxide (Zr(OBu)4 ) and the respective lead acetate (Pb(OAc)2 -3H2O). WhatmanRanodisc membranes, with a 200nm pore size, served as the template. After the removal of the template in the 6M-NaOH, scanning electron microscopy shows that the shapes formed are 200 nm outer diameter tubes with 50mm lengths. Transmission electron microscopy and electron diffraction reveal that the tubes are polycrystalline. The PT nanotubes so far have shown an anomalous transition temperature, 234.4$^{\circ}C$ as measured by DSC with a small particle size, 15.4 nm determined by X-ray analysis with the aid of Scherrer's equation.

Color Stability of the Bioplastic containing Sorghum Extract Chelated by Fe(II) and Cu(II) (Fe(II)와 Cu(II)에 의해 킬레이트화 된 수수추출물 함유 바이오플라스틱의 색상 안정성)

  • Lee, Ga Hyun;Lee, Sung June;Jeong, Sang Won;Kim, Hyun-Chul;Choi, Jin Hyun;Bae, Do Gyu;Han, Sang Ik;Lee, Se Geun
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.62-69
    • /
    • 2015
  • To improve the color stability of the bioplastic containing sorghum extract, sorghum extract was chelated by a metal ion. The chelating activity was quantitatively evaluated under the various conditions. Chelation of sorghum extract by Cu(II) was determined by reaction with pyrocatechol violet, whereas Fe(II) chelation was investigated by forming complexes with ferrozine. Chelation of sorghum extract was increased rapidly with increasing concentrations of metal salt and sorghum extract. At a 0.1g/L metal salt addition level, the chelating activity of Fe(II) and Cu(II) were 66.7% and 54.2%, respectively. According to the chelation pH conditions, the sorghum extract was chelated almost 100% by Fe(II) above the pH 6.5. It was confirmed that Fe(II) was a strong chelator of sorghum extract than Cu(II). The sorghum extract chelated with metal salt exhibit higher thermal stability. The bioplastic containing chelated sorghum extract showed relatively less color change than the control.

Synthesis and Adsorption Characterization of Amidoximated Hydrolyzed Extruded PAN (친수성기를 부여한 아미독심화 압출 PAN 킬레이트수지의 製造 및 轉移金屬($CU^{2+}, Ni^{2+}$)의 選擇的 吸着特性 調査)

  • Lee, Seung-Min;Kim, Jong-Hwa;Lee, Soo
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.13-19
    • /
    • 2001
  • Several hydrolyzed extruded PAN's were prepared through reaction of extruded PAN (7.5% methyl acrylate) with NaOH in methanol at various temperatures and times. These were amidoximated with hydroxylamine in MeOH and/or $H_2$O to introduce an excellent adsorption capacity of heavy metal ions. Amidoximated hydrolyzed extruded fAN showed superior swellability to non-hydrolyzed extruded PAM. The amidoximated extruded PAN hydrolyzed for 6h at $60^{\circ}C$ showed the best dimensional stability. Amidoximated hydrolyzed extruded PAN has more adsorption capacity of $Cu^{2+}$ than that of $Ni^{ 2+}$ These PAN derivates also showed an excellent selectivity for adsorption of metal ions.

  • PDF

Separation and Recovery of Ce, Nd and V from Spent FCC Catalyst (FCC 폐촉매로부터 Ce, Nd 및 V의 분리 회수 프로세스)

  • Jeon, Sung Kyun;Yang, Jong Gyu;Kim, Jong Hwa;Lee, Sung Sik
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.679-684
    • /
    • 1997
  • The major constituents in spent FCC catalysts are Si, Al, Fe, Ti, alkali metals and some others. The spent catalyst is also composed small amounts of rare metals such as Ce, Nd, Ni and V. The selective adsorption and concentration of Ce and Nd from the leaching solution of spent FCC catalysts with sulfuric acid($0.25mol/dm^3$) were carried out by the column method with a chelate resin having a functional group of aminophosphoric acid type. Ce and Nd were separated from eluate liquor containing Al, Nd and V by the precipitation process with oxalic acid. Vanadium is purified from chloride ion coexistance by solvent extraction, employing tri-n-octyl phosphine oxide as extractant with Al in the raffinate solution. Rare metals with the purity of 99 percent were obtained from the spent FCC catalyst.

  • PDF

Studies on Electrochemical Behavior of Some Light Lanthanide Ions in Nonaqueous Solution, Flow Injection Determination and Photochemical Characterization of Heavy Metal Ion Chelate Eight Coordinated Complexes. (Part 2) (비수용액에서 가벼운 란탄족 이온의 전기화학적 거동, 흐름 주입법에 의한 정량 및 중금속 이온의 킬레이트형 8-배위 착물의 광화학적 특성 연구 (제 2 보) : 계면활성제 존재하에서 Chromeazurol S를 사용하여 몇 가지 란탄이온의 흐름주입법에 의한 정량)

  • Gang, Sam U;Jang, Ju Hwan;Kim, Il Gwang;Han, Hong Seok;Jo, Gwang Hui
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.1
    • /
    • pp.50-54
    • /
    • 1994
  • Spectrophotometric determination of some light lanthanide ions by flow injection method is described. Chromeazurol S forms water soluble complex with lanthanide ions in the presence of DTAB. The absorption maximum of the complexes are from 650 nm to 655 nm and the molar absorptivities were ca. $1.8{\times}10^5\;L mol^{-1}cm^{-1}$ on Tris buffer (pH 10.5). The calibration curves for Nd(III), Eu(III) and Sm(III) obtained by FIA are over the range of 0.1 to 0.6 ppm and the correlation coefficient were ca. 0.9993. The detection limits (S/N) were from 10 ppb for Nd(III) and Eu(III) to 20 ppb for Sm(III). The relative standard deviations was ${\pm}$.2% for 0.4 ppm sample. The samples throughput was ca. $50\;cm^{-1}$.

  • PDF

Determination of Chromium (Ⅵ) by Extraction Polarographic Method (추출폴라로그래프법에 의한 Cr (Ⅵ) 의 정량)

  • Park Doo Won;Bae Zun Ung
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.494-499
    • /
    • 1976
  • The extraction-polarographic method applied to the determination of micro amount of chromium (Ⅵ). Chromium(Ⅵ) was extracted into methylisobuthylketone(MIBK) layer containing diethyldithiocarbamate(DDTC) as Cr(Ⅲ)-DDTC complex from acetate buffered aqueous, solution of pH 5.4 and the direct current polarogram for the extract was recorded after addition of sodium perchlorate as supporting electrolyte. The reduction current was diffusion controlled. And the half wave potential of this reduction wave was -0.81 volt vs. SCE. The diffusion current was proportional to the chromium concentraticn in aqueous solution in the range of 8∼160 ppm. And the chromium(Ⅵ) could be selectively determined in the presence of chromium(Ⅲ), since the chromium(Ⅲ) did not interfere up to twice the amount of chromium(Ⅵ). Many of other metals such as Mn(Ⅱ), Cu(Ⅲ), Zn(Ⅱ), Mg(Ⅱ), Ni(Ⅱ) and Ag(Ⅰ) were found to have no effect even when present in 1000 times the amount of chromium (Ⅵ).

  • PDF

Particle Shapes and Optical Property of Synthesized ZnO with Amine Additives (아민첨가제를 사용하여 합성된 ZnO의 입자형상 및 광학적 특성)

  • Hyeon, Hye-Hyeon;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • Zinc oxide of hexagonal wurzite, is known as n-type semiconductor. It has a wide band gap energy of 3.37 eV and large exciton binding energy of 60 meV. It can be widely applied to gas sensors, laser diodes, dye-sensitized solar cells and degradation of dye waste. The use of microwave hydrothermal synthesis brings a rapid reaction rate, high yield, and energy saving. Amine additives control the different particle shapes because of the chelate effect and formation of hydroxide ion. In this study, zinc nitrate hexahydrate was used as zinc precursor. In addition, ethanolamine, ethylenediamine, diethylenetriamine, and hexamethylenetetramine are used as shape control agent. The pH value was controlled as 11 by NaOH. The shapes of zinc oxide are star-like, rod, flower-like, and circular cone. In order to analyze physical, chemical, and optical properties of ZnO with diverse amine additives, we used XRD, SEM, EDS, FT-IR, UV-Vis spectroscopy, and PL spectroscopy.

Electrochemical Behaviors and Analytical Application of Copper-1,5,9,13-Tetrathiacyclohexadecane Complex in Acetonitrile (아세토니트릴 용매 중에서 Copper-1,5,9,13-Tetrathiacyclohexadecane착물의 전기화학적 거동과 그 분석적 응용)

  • Moo-Lyong Seo;Bu-Yong Lee;Myung-Ja Choi;Bae Jun Ung;Park Tae Myeong
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.412-418
    • /
    • 1992
  • The electrochemical behaviors and analytical application of copper-1,5,9,13-tetrathiacyclohexadecane[16-ane-$S_4$] complex in acetonitrile(AN) solution have been investigated by the use of DC polarography and differential pulse polarography. Thus the formation constant of copper complex was $10^{3.51}$. Copper (Ⅱ) ion was found to form complex of 1-to-1 composition with [16-ane-$S_4$]. In addition, reduction step was irreversible and the reduction current was diffusion controlled. And the effect of concentration of the salting-out reagent and chelating agent and pH of aqueous phase on the determination of copper (Ⅱ) was investigated and diverse ion effect was discussed. By salting-out extraction technique, we can be determined until the concentration of copper (Ⅱ) of 60 ppb.

  • PDF

A Study on the Solvent Extraction Kinetics of Complex Nickel(Ⅱ) 8-Hydroxyquinolinate by Spectrophotometry (분광광도법에 의한 Ni(Ⅱ)-8-Hydroxyquinolinate의 용매추출 반응속도론)

  • Heung Lark Lee;Oh In-Gyung
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.4
    • /
    • pp.540-545
    • /
    • 1992
  • Kinetics and mechanism on the solvent extraction of nickel(Ⅱ) with 8-hydroxyquinoline (HOx) was studied spectrophotometrically. Absorbance variation was measured by changing the 8-hydroxyquinoline concentration in the chloroform organic phase and the pH values in the aquous phase. By analyzing absorbance data the reaction rate was found to be the first order for 8-hydroxyquinoline concentration and the inverse first one for [H$^+$]. Therefore the rate determining step of the extraction reaction is the formation of the one-to-one metal chelate NiOx$^+$ and the rate equation is as follows; -d[Ni$^{2+}$]/dt = k[Ni$^{2+}$][Ox$^-$] = k'[Ni$^{2+}$][HOx]$_0$/[H$^+$]. The value of k' was evaluated from the slope of plot of log [Ni$^{2+}$]$_0$/[Ni$^{2+}$]$_t$ versus time and the rate constant k was calculated according to the equation k' = k ${\times}$ K$_{HOx}$ / K$_{D,HOx}$. From the temperature dependence of the extraction rate, the activation energy E$_a$ = 6.26 kcal/mol is calculated, and activation parameters, ${\Delta}$G$^{\neq}_{298}$ = 6.59 kcal/mol, ${\Delta}$H$^{\neq}_{298}$ = 5.68 kcal/mol, ${\Delta}$S$^{\neq}_{298}$ = -3.09 eu/mol are estimated.

  • PDF