• Title/Summary/Keyword: H adsorption

Search Result 2,164, Processing Time 0.034 seconds

Effect of Degraded Al-doped ZnO Thin Films on Performance Deterioration of CIGS Solar Cell (고온 및 고온고습 환경 내에서 ZnO:Al 투명전극의 열화가 CIGS 박막형 태양전지의 성능 저하에 미치는 영향)

  • Kim, Do-Wan;Lee, Dong-Won;Lee, Hee-Soo;Kim, Seung-Tae;Park, Chi-Hong;Kim, Yong-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.328-333
    • /
    • 2011
  • The influence of Al-doped ZnO (AZO) thin films degraded under high temperature and damp heat on the performance deterioration of Cu(In,Ga)$Se_2$ (CIGS) solar cells was investigated. CIGS solar cells with AZO/CdS/CIGS/Mo structure were prepared on glass substrate and exposed to high temperature ($85^{\circ}C$) and damp heat ($85^{\circ}C$/85% RH) for 1000 h. As-prepared CIGS solar cells had 64.91% in fill factor (FF) and 12.04% in conversion efficiency. After exposed to high temperature, CIGS solar cell had 59.14% in FF and 9.78% in efficiency, while after exposed to damp heat, it had 54.00% in FF and 8.78% in efficiency. AZO thin films in the deteriorated CIGS solar cells showed increases in resistivity up to 3.1 times and 4.4 times compared to their initial resistivity after 1000 h of high temperature and damp heat exposure, respectively. These results can be explained by the decreases in carrier concentration and mobility due to diffusion or adsorption of oxygen and moisture in AZO thin films. It can be inferred that decreases in FF and conversion efficiency were caused by an increase in series resistance, which resulted from an increase in resistivity of AZO thin films degraded under high temperature and damp heat.

Study on the Detachment of Fluorescent Whitening Agents from White Waster Papers (인쇄용지 재활용을 위한 형광증백제 탈착에 대한 기초연구)

  • Lee, Ji Young;Kim, Chul Hwan;Kim, Eun Hea;Park, Tae Ung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.5-12
    • /
    • 2016
  • White waste papers are very important resources in the paper industry, but their use is limited because of the residual of fluorescent whitening agent (FWA). So the removal of FWAs from waste paper is an important task in the recycling process to improve the use of recycled resources. In this study, we focused on the FWAs used for surface treatments and carried out physical and chemical treatments to remove them from white waste papers. The white waste papers were disintegrated with a surfactant in different pH and temperature conditions, and then handsheets were made for the measurement of the fluorescence index, which is proportional to the amount of FWAs on papers. The effect of the flotation process on the removal of FWAs after disintegration was also investigated. The fluorescence index decreased as the disintegration time increased, but over a relatively long time, the fluorescence index increased again, which indicated the readsorption of the FWAs detached from the cellulosic fibers of the white waste papers. The lowest fluorescence index was shown when the waste papers were disintegrated with a 0.3% surfactant addition at pH 10 and at $45^{\circ}C$. However, the flotation treatment was not effective, because the flotation induced contact between the detached FWAs and the cellulosic fibers, and re-adsorption occurred.

Studies on the Detergency of Particulate Soil using Vacuum Cleaner Dirt as Model (진공청소기 분진을 모델로 한 고형오염의 세척성에 관한 연구)

  • Kang In-Sook;Kim Sung-Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.3 s.31
    • /
    • pp.286-294
    • /
    • 1989
  • This Study has treated the effects of fiber, surfactants, temperature, surfactant concentration, pH, electrolyte, fatty acid contents and mechanical force on the removal of particulate soil from fabric, vacuum cleaner dirt was used as model particulate soil. The fabrics were soiled with mixture of vacuum cleaner dirt and fatty soil, and washed in Terg-O-tometer. The detergency was evaluated by measuring reflectance of a fabric before and after washing. The results were as follows. 1. The fiber type showed a different pattern of soil removal with surfactants. In general, particulate soil removal increased in the following order Acetate>PET. Nylon>Cotton. Particulate soil removal, which is affected by the surfactant type, increased in the following order NPE $(EO)_{10}\leqq$Soap>SLS>DBS>Tween 80. 2. The influence of temperature on the particulate soil removal was very complex because efficiency of removal was varied with surfactant and fiber types. The washing efficiency of NPE $(EO)_{10}$ was highest at around $40^{\circ}C\;and\;60^{\circ}C$ with cotton and PET but the washing efficiency of DBS was the highest at $60^{\circ}C$ with cotton, decreased monotonously with increasing temperature with PET 3. The detergency of particulate soil increased with increasing surfactant concentration at relatively low concentration and then levelled off above some optimum concentration. 4. The removal of particulate soil increased with increasing pH and mechanical force. 5. Effect of electrolyte on the particulate soil removal was depended on the concentration of the surfactant. At low concentration of surfactant, addition of electrolytes improved soil removal but above the some concentration no effect was observed. At high concentration of surfactant, Vie., $0.6\%$ , the maximum washing effect is reached without added electrolyte. These result indicate that added electrolyte only influence the adsorption of surfactant on the soil and fiber 6. Fatty acid content in the soil did not influence on particulate soil removal without regard to surfactants.

  • PDF

A Performance Modeling of the Lean NOx Trap Catalyst with GT-POWERTM (GT-POWERTM를 이용한 Lean NOx Trap 촉매 성능 모델링)

  • Kim, Hyunjun;Han, Manbae;Jeon, Ji-Yong;Kim, Tae-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.64-71
    • /
    • 2013
  • In this study we designed a lean $NO_x$ trap (LNT) model with $GT-POWER^{TM}$ program and then the LNT model was compared to the bench flow reactor test results. This model consists of 9 kinetic reactions to represent the main steps of NO oxidation, $NO_x$ adsorption, $NO_x$ release and then its reduction. The comparison was performed on the operating conditions at the space velocity of 50,000 1/hr and 80,000 1/hr with the temperature range of $200^{\circ}C{\sim}500^{\circ}C$ with the even spaced temperature step of $50^{\circ}C$. The experimental results show that the $NO_x$ conversion efficiency was enhanced by the temperature up to $350^{\circ}C$ and then decayed at higher temperatures. The LNT model predicts the similar trend of the $NO_x$ conversion efficiency to the experimental results below $350^{\circ}C$, but overestimates above $350^{\circ}C$. This overestimation comes from the higher reduction efficiency which was obtained by the different reduction gas composition such as $C_3H_6$ in the model to replace $CH_4$, $C_2H_4$ in the bench test.

Thermo-responsive antifouling study of commercial PolyCera® membranes for POME treatment

  • Haan, Teow Yeit;Chean, Loh Wei;Mohammad, Abdul Wahab
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • Membrane fouling is the main drawback of membrane technology. Frequent membrane cleaning and membrane replacement are, therefore, required to reduce membrane fouling that causes permeate flux reduction, lower rejection, or higher operating pressure. Studies have proved that the alteration of membrane properties is the key controlling factor in lessening membrane fouling. Among stimuli-responsive membranes, thermo-responsive membrane is the most popular, with a drastic phase transition and swelling-shrinking behavior caused by the temperature change. In this study, the thermo-responsive ability of two commercial membranes, PolyCera® Titan membrane and PolyCera® Hydro membrane, at different temperatures was studied on the antifouling function of the membrane in palm oil mill effluent (POME) treatment. The evaluation of the membrane's thermo-responsive ability was done through three cycles of adsorption (fouling) and desorption (defouling) processes in a membrane filtration process. The experimental result depicted that PolyCera® Hydro membrane had a higher membrane permeability of 67.869 L/㎡.h.bar than PolyCera® Titan membrane at 46.011 L/㎡.h.bar. However, the high membrane permeability of PolyCera® Hydro membrane was compensated with low removal efficiency. PolyCera® Titan membrane with a smaller mean pore size had better rejection performance than PolyCera® Hydro membrane for all tested parameters. On the other hand, PolyCera® Titan membrane had a better hydrodynamic cleaning efficiency than PolyCera® Hydro membrane regardless of the hydrodynamic cleaning temperature. The best hydrodynamic cleaning performed by PolyCera® Titan membrane was at 35℃ with the flux recovery ratio (FRR) of 99.17 ± 1.43%. The excellent thermo-responsive properties of the PolyCera® Titan membrane could eventually reduce the frequency of membrane replacement and lessen the use of chemicals for membrane cleaning. This outstanding exploration helps to provide a solution to the chemical industry and membrane technology bottleneck, which is the membrane fouling, thus reducing the operating cost incurred by the membrane fouling.

Spectrophotometric Determination of Scandium(III) with Eriochrome Cyanine R in the Presence of Cetyltrimethylammonium bromide (Cetyltrimethylammonium bromide에서 Eriochrome Cyanine R에 의한 스칸듐(III)의 분광광도법 정량)

  • Cha, Ki-Won;Park, Chan-Il;Kim, Jong-Whon
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.139-144
    • /
    • 1996
  • The spectrophotometric determination method of scandium with eriochrome cyanine R(ECR) and the composition ratio of the complex were investigated in the presence of surfactants. The absorbance increase and red shift of maximum adsorption wavelength of Sc(III)-ECR complex were observed in cetyltrimethylammonium bromide (CTMAB), but those changes were not observed in the sodium dodecyl sulfate(SDS) and Triton X-100. A volume of 5ml of $1{\times}10^{-3}M$ ECR and 10ml of $2{\times}10^{-4}M$ CTMAB are necessary for the determination of $1{\times}10^{-7}{\sim}3.0{\times}10^{-6}M$ Sc(III) at pH 6.5. The apparent molar absorption coefficient of the Sc(III)-ECR-CTMAB, temary complex at 610nm is $5.6{\times}10^5mol^{-1}cm^{-1}L$ and its detection limit is $1.0{\times}10^{-7}M$. The binary complex composition of Sc(III)-ECR is 1:2 and the ternary complex composition of Sc(III)-ECR-CTMAB is 1:3:1.

  • PDF

Optimization of uranium biosorption in solutions by Sargassum boveanum using RSM method

  • Hashemi, Nooshin;Dabbagh, Reza;Noroozi, Mostafa;Baradaran, Sama
    • Advances in environmental research
    • /
    • v.9 no.1
    • /
    • pp.65-84
    • /
    • 2020
  • The potential use of Sargassum boveanum algae for the removal of uranium from aqueous solution has been studied by varying three independent parameters (pH, initial uranium ion concentration, S. boveanum dosage) using a central composite design (CCD) under response surface methodology (RSM). Batch mode experiments were performed in 20 experimental runs to determine the maximum metal adsorption capacity. In CCD design, the quantitative relationship between different levels of these parameters and heavy metal uptake (q) were used to work out the optimized levels of these parameters. The analysis of variance (ANOVA) of the proposed quadratic model revealed that this model was highly significant (R2 = 0.9940). The best set required 2.81 as initial pH(on the base of design of experiments method), 1.01 g/L S. boveanum and 418.92 mg/L uranium ion concentration within 180 min of contact time to show an optimum uranium uptake of 255 mg/g biomass. The biosorption process was also evaluated by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models represented that the experimental data fitted to the Langmuir isotherm model of a suitable degree and showed the maximum uptake capacity of 500 mg/g. FTIR and scanning electron microscopy were used to characterize the biosorbent and implied that the functional groups (carboxyl, sulfate, carbonyl and amine) were responsible for the biosorption of uranium from aqueous solution. In conclusion, the present study showed that S. boveanum could be a promising biosorbent for the removal of uranium pollutants from aqueous solutions.

Strength and conversion characteristics of DeNOx catalysts with the addition of dispersion agent (분산제 첨가에 따른 탈질촉매의 강도세기 및 전환특성)

  • Lee, Hyun Hee;Park, Kwang Hee;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6575-6580
    • /
    • 2013
  • Various modified SCR catalysts were prepared and tested to improve the strength of catalysts for use under severe conditions. The SCR catalysts were modified with a binder and dispersion agent, and tested at the fixed bed reactor. FT-IR and $H_2$-TPR were used to analyze the degree of hydrogen use and ammonia adsorption by the modified catalysts. In the case of the SCR catalysts coated with 2.3g of the binder, 4.7g of ethanol, and 0.1g of dispersion agent, the strength of catalyst was increased by approximately 12%. On the other hand, despite the enhancement of strength, the activities of the SCR catalysts were decreased by 2-10%. When the mixed solution composed of binder, dispersion agent and $SiO_2$ solution was precipitated on the catalyst, the $NO_x$ conversion of the catalyst was decreased slightly. The Bronsted acid site and Lewis acid site worked as the activators for the SCR reaction, and were decreased by $SiO_2$.

Variation of Pore Structure of Coal-based Activated Carbon with Burn-off of Steam Activation (수증기 활성화법으로 제조된 석탄계 활성탄의 Burn-off에 따른 세공구조의 변화)

  • Lee, Song-Woo;Moon, Jang-Cheon;Lee, Chang-Han;Choi, Dong-Hoon;Ryu, Dong-Chun;Song, Seung-Koo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2141-2148
    • /
    • 2000
  • This study is to investigate changes of pore structure with different burn-off degree of steam activated carbons manufactured from domestic anthracite. The activated carbons were characterized by adsorption of nitrogen at 77 K. Steam activation substantially enhanced the porosity of the activated carbons. Burn-off increased linearly according to increasing activation time, and total pore volume and BET surface area increased with burn-off. Activation at $800^{\circ}C$ increased more micropore volume than that at $950^{\circ}C$. Activated carbons manufactured at high temperature had less microporosity than that at lower temperature, but had more developed macroporosity. The steam activation produced an enlargement of pore below $100{\AA}$ diameter in the activated carbons. Furthermore, the porosity in the $6{\sim}40{\AA}$ pore diameters range increased considerably with the degree of burn-off.

  • PDF

V(IV) Species, Location and Adsorbate Interactions in VH-SAPO-42 Studied by ESR and Electron Spin-Echo Modulation Spectroscopies

  • Back, Gern-Ho;Yu, Jong-Sung;Lee, Hye-Young;Kim, Min-Sik;Lee, Yong-Ill
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.2
    • /
    • pp.95-109
    • /
    • 2007
  • Vanadium-incorporated aluminophosphate microporous molecular sieve VH-SAPO-42 has been studied by electron spin resonance(ESR) and electron spin-echo modulation (ESEM) spectroscopies to determine the vanadium location and interaction with various adsorbate molecules. The results are interpreted in terms of V(IV) ion location and coordination geometry. Assynthesized VH-SAPO-42 contains only vanadyl species with distorted octahedral or trigonal bipyramidal coordination. Vanadium incorporated into H-SAPO-42 occupied extra-framework site. After calcinations in $O_2$ and exposure to moisture, only species A is observed with reduced intensities. Species A is identified as a $VO(H_2O)_2^{2+}$ complex coordinated to three framework oxygen atoms bonded to aluminum. When hydrated VH-SAPO-42 is dehydrated at elevated temperature by calcination, species A loses its water ligand and transforms to $VO^{2+}$ ions coordinated to three framework oxygens (species B). Species B reduces its intensities significantly after treatment with $O_2$ at high temperature, thus suggesting oxidation of $V^{4+}$ to $V^{5+}$. When dehydrated VH-SAPO-42 makes contact with $D_2O$ at room temperature, the ESR signal of species A is regained. The species is assumed as a $VO(O_f)_3(D_2O)_2$ by considering three framework oxygens. Adsorption of deuterated methanol on dehydrated VH-SAPO-42 results in another new vanadium species D, which is identified as a $VO(CD_3OH)_2$ complex. When deuterated ethylene is adsorbed on dehydrated VH-SAPO-42, another new vanadium species E identified as a $VO(C_2D_4)^{2+}$, is observed. Possible coordination geometries of these various complexes are discussed.

  • PDF