• 제목/요약/키워드: Gyroscopic angle

검색결과 15건 처리시간 0.019초

가공 오차를 고려한 스핀들 시스템의 동적 특성 해석 (Dynamic Analysis of a Tilted HDD spindle system due to Manufacturing Tolerance)

  • 곽규열;김학운;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.852-858
    • /
    • 2007
  • This paper investigates the dynamic characteristics of a tilted HDD spindle system with fluid dynamic bearings (FDBs). Tilting motion of a HDD spindle system may be caused by improper manufacturing tolerance, such as imperfect cylindricity between shaft and sleeve of FDBs, imperfect perpendicularity between shaft and thrust as well as the gyroscopic moment of the unbalanced mass of the rotating part. Tilting motion may result in the instability of the HDD spindle system and it may increase the disk run-out to limit memory capacity. This research proposes a modified Reynolds equation for the coupled journal and thrust FDBs to include the variable film thickness due to the cylindricity and the perpendicularity. Finite element method is used to solve the Reynolds equation for the pressure distribution. Reaction forces and friction torque are obtained by integrating the pressure and shear stress, respectively. The dynamic behavior is determined by solving the equations of a motion of a HDD spindle system in six degrees of freedom with the Runge-Kutta method to study whirling and tilting motions. This research shows that the cylindricity and the perpendicularity increase the tilting angle and whirl radius of the rotor.

  • PDF

A study on the modeling of a hexacopter

  • Le, Dang-Khanh;Nam, Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권10호
    • /
    • pp.1023-1030
    • /
    • 2015
  • The purpose of this paper is to present the basic mathematical modeling of a hexacopter, which could be used to develop proper methods for stabilization and trajectory control. A hexacopter consists of six rotors with three pairs of counter-rotating fixed-pitch blades. This mechanism is an under-actuated, dynamically unstable, six-degrees-of-freedom system. The whole motion of this object consists of translational and rotational motion in three dimensions, where the translational motion is created by changing the direction and magnitude of the upward propeller thrust. The hexacopter is controlled by adjusting the angular velocities of the rotors, which are spun by electric motors. It is assumed to be a rigid body; thus, the differential equation of the hexacopter dynamics can be derived from the Newton-Euler equation. The Euler-angle parametrization of the three-dimensional rotations contains singular points in the coordinate space that can cause failure of both the dynamical model and control. In order to avoid singularities, the rotations of the hexacopter are parametrized in terms of quaternions. This choice has been made considering the linearity of the quaternion formulation and their stability and efficiency. Further, control simulation of a hexacopter applying cascaded-PID control is also presented in this paper.

Dynamic analysis of a rotating tapered composite Timoshenko shaft

  • Zahi Rachid;Sahli Abderahmane;Moulgada Abdelmadjid;Ziane Noureddine;Refassi Kaddour
    • Steel and Composite Structures
    • /
    • 제48권4호
    • /
    • pp.429-441
    • /
    • 2023
  • This research presents an advanced finite element formulation for analyzing the vibratory behaviour of tapered composite shaft rotors, taking into account the impact of the draft angle on the stiffness of the composite shaft laminate. The vibration response of the shaft rotating around its axis is studied using both the finite element hierarchical method and the classical finite element formulation, based on the theory of transverse shear deformation, rotary inertia, gyroscopic effect, and coupling effect due to the stratification of the composite layers of the shaft. The study also includes the development of a program to calculate the Eigen frequencies and critical speeds of the system, and the obtained results are compared with those available in the literature. This research provides valuable insights into the vibratory behaviour of tapered composite shaft rotors and can be useful for designing and optimizing such structures in various industrial applications.

Dynamic analysis of a functionally graded tapered rotating shaft under thermal load via differential quadrature finite elements method

  • Fethi, Hadjoui;Ahmed, Saimi;Ismail, Bensaid;Abdelhamid, Hadjoui
    • Advances in aircraft and spacecraft science
    • /
    • 제10권1호
    • /
    • pp.19-49
    • /
    • 2023
  • The present study proposes a theoretical and numerical investigation on the dynamic response behaviour of a functional graded (FG) ceramic-metal tapered rotor shaft system, by the differential quadrature finite elements method (DQFEM) to identify the natural frequencies for modelling and analysis of the structure with suitable validations. The purpose of this paper is to explore the influence of heat gradients on the natural frequency of rotation of FG shafts via three-dimensional solid elements, as well as a theoretical examination using the Timoshenko beam mode, which took into account the gyroscopic effect and rotational inertia. The functionally graded material's distribution is described by two distribution laws: the power law and the exponential law. To simulate varied thermal conditions, radial temperature distributions are obtained using the nonlinear temperature distribution (NLTD) and exponential temperature distribution (ETD) approaches. This work deals with the results of the effect on the fundamental frequencies of different material's laws gradation and temperature gradients distributions. Attempts are conducted to identify adequate explanations for the behaviours based on material characteristics. The effect of taper angle and material distribution on the dynamic behaviour of the FG conical rotor system is discussed.

콴다효과를 적용한 고정식 핀 안정기의 성능개선에 관한 연구 (A Study to Improve the Performance of a Fixd Type Fin Stabilizer with Coanda Effect)

  • 서대원;이세진;이승희
    • 한국항해항만학회지
    • /
    • 제37권3호
    • /
    • pp.257-262
    • /
    • 2013
  • 거친 바다를 운항하는 선박의 경우 횡 동요로 인해 선박 내의 장비운영 문제 및 탑승객들에게 큰 불편함을 초래한다. 따라서 횡동요 감쇠를 위한 목적으로 빌지 킬, 핀 안정기, 자이로스코프, ART(Anti-Rolling Tank), 타, 플랩 등 다양한 횡 동요 감쇠장치들이 사용되고 있다. 콴다효과는 콴다제트가 곡면의 표면을 따라 흐르며 주위 유동의 순환을 증가시켜 양력을 효과적으로 발생시키는 방법으로 핀의 양력성능을 향상시킬 수 있다. 본 연구에서는 모형시험 및 수치계산을 통해 콴다효과를 적용한 고정식 핀 안정기의 사용가능성을 검토하였다. 그 결과 받음각이 $0^{\circ}$에서, 제트모멘텀을 $C_j$ = 0.25 만큼 공급할 때, 기준 핀의 최대 작동각($26^{\circ}$)에서 발생되는 양력과 동일하게 발생되는 것으로 나타났다. 즉 받음각을 변화시키는 기존의 핀 안정기와 달리 받음각을 고정하고, 콴다효과를 통한 제트유동제어만으로 선박의 횡 동요를 능동적으로 제어 할 수 있을 것으로 보인다.