• Title/Summary/Keyword: Gyro misalignment

Search Result 12, Processing Time 0.015 seconds

The Body-Coupling Compensation in the 2-Gimbaled Seeker for the Homing Guidance of Bank-to-Turn Missile (Bank-to-Turn 유도탄의 호밍유도를 위한 2축 김발형 탐색기 동체운동 상관 보상)

  • Jeong, Sang-Keun;Kim, Eul-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.101-106
    • /
    • 2002
  • In a bank-to-turn(BTT) missile, if a 2-gimbaled seeker was stabilized using a 2-axis rate gyro mounted along its primary axis, the change of line of sight(LOS) measured by the seeker would be induced by rolling effects due to bank-to-turn(BTT) steering as well as an actual change. It is observed that the body-coupled effects in a homing loop of BTT missile are mainly concerned with the spurious target maneuver and the coupling due to the rate gyro misalignments. In this paper, we formulate a simple linear BTT homing loop model with seeker model including each body-coupling. With the model, we analyze the effects of the couplings on the homing loop stability, and propose a direct linear compensator for the coupling to recover the stability.

The Kalman filter implementation for SDINS alignment using the E.M.Log (E.M.Log를 이용한 스트랩다운 관성항법장치의 초기정렬을 위한 칼만필터 구현)

  • 유명종;전창배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.299-303
    • /
    • 1993
  • In an underwater vehicle, the navigation error is mostly caused by the initial misalignment, the bias of a gyro and an accelerometer, and the sea current. Therefore, it is important that these error sources are estimated and compensated in order to reduce the navigation error. In this paper, the E.M.Log aided SDINS is designed by using the E.M.Log which measures the forward velocity of a vehicle. And the system error state equation and the measurement equation are derived and the suboptimal Kalman Filter is established for this aided SDINS. The simulation result showed that this had an important role in estimating and compensating these error sources, thus reducing the navigation error of an underwater vehicle.

  • PDF