• Title/Summary/Keyword: Gyro Effect

Search Result 59, Processing Time 0.025 seconds

Gyro Effect Control of the Quadrotor UAV using Feedback Linearization (피드백 선형화를 이용한 쿼드로터의 자이로 효과 제어)

  • Kim, Young-Min;Baek, Woon-Bo
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.248-255
    • /
    • 2020
  • This paper introduces a Feedback Linearization (FL) controller to eliminate the gyro effect on a quadrotor UAV. In order to control the attitude of the quadrotor, the second model equation was differentiated to the 4-th order to induce the control input to be revealed, and then a new control input was derived based on the attitude transformation equation with a gyro effect. For the initial quick posture control of the quadrotor, the existing yaw control was replaced with a separate controller. The simulation was conducted with an experiment in which FL control to remove the gyro effect was applied to the quadrotor and an experiment without removing the gyro effect, from the experimental results, the maximum error seen in each axial direction of the quadrotor was x = 0.22 m, y = 0.20 m, z = 0.16 m. Through the proposed method, the effect of the FL controller for controlling the gyro effect of the quadrotor was confirmed.

Design of a Troidal Type Gyro using Repulsive Power of Permanent Magnet and Coriolis Effect (영구자석의 반발력과 코리올리 효과를 이용한 트로이덜 형 자이로의 설계)

  • Shin, Hye-Ung;Jou, Sung Tak;Lee, Kyo-Beum;Han, Man Yop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.694-700
    • /
    • 2015
  • This paper deals with the design of 1-kW troidal type gyro. In general, gyro can be used as magnet bearing or flywheel energy storage device. The proposed troidal type gyro is used as a flywheel energy storage device. The gyro is capable of high-speed rotation in the air. The coriolis effect is taken into account when designing the rotor of the proposed gyro. Also the repulsive power of the permanent magnet is considered while selecting the shape and the thickness of the magnet. The neodymium is used as material of the magnets in this paper. The number of magnets are selected accordingly to reduce these torque ripples because torque ripples is an important factor while designing the gyro. The designed troidal type gyro is verified through the Finite Element Method (FEM).

Gyro Drift Model Using Structure Function and Effect on Control System Performance (Structure Function을 사용한 Gyro Drift의 등가모델과 제어시스템에 끼치는 영향의 연구)

  • Choi, Hyung-Jin
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.1-6
    • /
    • 1989
  • This paper addresses modeling of the gyro drift by using the structure function approach which has been originally developed for characterization of the oscillator phase noise. It is shown that by using this approach, an arbitrary order of random and deterministic gyro drift processes can be characterized and easily measured. The relationship between the drift power spectral density and structure function is clarified. It is also shown that this approach simplifies analysis of the effect of drift on the control system performance.

  • PDF

An Implementation of Balance Beam Controller(New Construction Machinery) for an Attitude Control and Stabilization of an Unstructured Object (공중물체의 자세제어 및 안정화를 위한 밸런스 빔 제어기(신건설장비) 구현)

  • Yi Keon Young;Kim Jin-Oh
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, the balance beam control subsystem, new type of construction machinery using the mechanism of CMG (control moment gyro), for the attitude control of an unstructured object such as a beam carried by a tower crane, is designed and implemented. The balance beam controller consists of a wheel spinning at high speed and an outer gimbal for controlling the attitude of the wheel. Two motors, one for the wheel and the other for the gimbal, are used. Applying force to the spin axis of the wheel, as an input of the system, leads the torque about the axis because of the gyro effects. This torque is used to control the attitude of the unstructured object in this study. For the stabilizer function, in addition, holding the load at the current position, the attitude of the wheel is freed by cutting the power applied to the gimbal motor of the balance beam controller, which result in the braking force to stop the load by gyro effect. The works presented here include the mechanical system of the balance beam controller, the remote controller, the servo controller and the control software for the system. We also present experimental results to show that the system we proposed is useful as a new construction machinery which can control the attitude of the beam hanging from a tower crane.

Posture Sensing of a Tractor Using a DGPS and a Gyro Compass (DGPS와 Gyro Compass를 이용한 트랙터의 자세검출)

  • 정선옥;박원규;김상철;박우풍;장영창
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.179-186
    • /
    • 1998
  • This study was conducted to sense posture of an autonomous tractor using a DGPS, a gyro compass, and a potentiometer. Posture sensing system was constructed and its accuracy was evaluated. The accuracy of DGPS was evaluated under stationary and moving conditions, and the performance of the gyro compass and the potentiometer was investigated by measuring bearing and steering angles, respectively. Also, the effect of DGPS interference by obstacles was evaluated experimentally. The position accuracy was about 6.6cm(95%) under the stationary condition and 10 cm at sharp turning condition. Steering angle of the tractor could be related linearly to the output of the potentiometer that was installed on the rotating center of a knuckle arm. The positioning accuracy of the DGPS varied significantly according to the number of visible GPS satellites, but was good with more than 7 satellites. The DGPS gave bad solutions for sensing the posture of tractor when signals from satellites or the correction data from the base were interfered by obstacles.

  • PDF

Compensation of Pseudo Gyro Bias in SDINS (SDINS에서 의사 자이로 바이어스 보상 기법)

  • Jungmin Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.179-187
    • /
    • 2024
  • The performance of a Strapdown Inertial Navigation System (SDINS) relies heavily on the accuracy of sensor error calibration. Systematic calibration is usually employed when only a 2-axis turntable is available. For systematic calibration, the body frame is commonly defined with respect to sensor axes for ease of computation. The drawback of this approach is that sensor axes may undergo time-varying deflection under temperature change, causing pseudo gyro bias. The effect of pseudo gyro bias on navigation performance is negligible for low grade navigation systems. However, for higher grade systems undergoing rapid temperature change, the error is no longer negligible. This paper describes in detail conditions leading to the presence of pseudo gyro bias, and proposes two techniques for mitigating the error. Experimental results show that applying these techniques improves navigation performance for precision SDINS, especially under rapid temperature change.

Suppression of Output Distortion in a Gyroscope using Fiber Amplifier/Source by Tracking of Optimum Modulation Amplitude

  • Park, Hee-Gap
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.80-85
    • /
    • 1999
  • We propose and demonstrate a new scheme for suppression of output distortion in an open-loop gyroscope employing an erbium-doped fiber amplifier/source (FAS). In addition to the main modulation for the rotation rate measurement, a small auxiliary modulation at a different frequency is used to extract an error signal, which is necessary for keeping the quasi-dc component of the feedback signal power at a constant level for varying rotation rate. By active tracking of the optimum modulation condition using this two-frequency modulation scheme, we obtain stable gyro output with suppressed distortion as well as stable FAS characteristics. We also calculate the distortion in the gyro response due to the feedback effect, from which we estimate the FAS gyro output distortion due to the residual ac feedback effect when the dc feedback effect is removed by the proposed scheme. The measured residual deviation agrees reasonably with the estimation.

The Design of Path Length Controller in Ring Laser Gyroscope for Attitude Control in the LEO satellite (저궤도 위성 자세제어를 위한 자이로의 광경로 제어기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.256-260
    • /
    • 2008
  • The Ring Laser Gyro makes use of the Sagnac effect within a resonant ring cavity of A He-Ne laser and has more accuracy than the other Gyros. The Low Earth Orbit satellite for observatory use require the high accuracy Gyro to control and determine the altitude because of the need of payload pointing accuracy. In this paper, The theory of the Path Length Control is explained. The electrical design of Path Length Controller is described. The Design for Path Length Controller is composed of the demodulator, Integrator, Phase shifter, High Voltage Amplifier. We apply the circuit to 28cm square ring laser gyro and get the test results.

Odometry Error Correction with a Gyro Sensor for the Mobile Robot Localization (자이로 센서를 이용한 이동로봇 Odometry 오차 보정에 관한 연구)

  • Park Shi-Na;Hong Hyun-Ju;Choi Won-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.65-67
    • /
    • 2006
  • To make the autonomous mobile robot move in the unknown space, we have to know the information of current location of the robot. So far, the location information that was obtained using Encoder always includes Dead Reckoning Error, which is accumulated continuously and gets bigger as the distance of movement increases. In this paper, we analyse the effect of the size of the two wheels of the mobile robot and the wheel track of them among the factors of Dead Reckoning Error. And after this, we compensate this Dead Reckoning Error by Kalman filter using Gyro Sensors. To accomplish this, we develop the controller to analyse the error components of Gyro Sensor and to minimize the error values. We employ the numerical approach to analyse the error components by linearizing them because each error component is nonlinear. And we compare the improved result through simulation.

An Attitude Control and Stabilization of an Unstructured Object using CMG Subsystem (자이로 구동장치를 이용한 공중물체의 자세제어 및 안정화)

  • Lee, Geon-Yeong;Gwon, Man-O
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.459-466
    • /
    • 2000
  • In this paper, we propose an attitude controller for an unstructured object using CMG(Control Moment of Gyro) subsystem, which has a stabilizer function. The CMG subsystem consists of one motor for spinning the wheel and the other motor for turning the outer gimbal. While the wheel of CMG subsystem is spinning at high speed, applying force to the spin axis of the wheel leads the torque about the vertical axis. We utilize the torque to control the attitude of object in this study. For the stabilizer function, in additiion, holding the load at the current position, the power applied to the gimbal motor of CMG will be cut, which result in the braking force to stop the load by gyro effect. However, due to the gear reduction connected to outer gimbal, slow load motion cannot generate the braking force. Thus, in this study, we are willing to make a holding force by applying control power to the gimbal motor from the signal of piezoelectric gyroscopic sensor that detected the angular velocity of the load. These two features are demonstrated in experiment, carrying a beam with crane. As a result, load was started to rotate by controlling gimbal positiion and was stopped by turning off the gimbal power. Moreover, slow movement of the load was also rejected by additional control with gyroscopic sensor.

  • PDF