• Title/Summary/Keyword: Gyeongsang Supergroup

Search Result 27, Processing Time 0.02 seconds

Origin and Stratigraphic Implication of Calcretes from the Gyeongsang Supergroup in the Vicinity of Ulsan City (울산시 부근의 경상누층군에 발달한 캘크리트의 기원과 층서적 의미)

  • Paik, In Sung;Lee, Joon Dong;Kim, Jeong Jin;Kim, In Soo;Kim, Hyun Joo
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.431-446
    • /
    • 1998
  • The calcretes from the Cretaceous Gyeongsang Supergroup in the vicinity of Ulsan city have been examined at five sites (Daedong, Seodong, Ansachon, Deogha, and Mangyangri). In these calcretes, evidences indicating pedogenic origin are recognized. Included are calcite aureoles around detrital grains, pedotubular pores, microstromatactis, circumgranular cracks, fitted structure of adjacent peloids, calcrete ooids, rhizocretions, and calcrete intraclasts. On the basis of calcrete development together with lithofacies, the depositional environments of those deposits are interpreted as lake margin (Daedong deposits), braided to low-sinuosity river (Seodong deposits), braid plain (Ansachon deposits), and meandering river (Deogha and Mangyangri). Stratigraphically, the fluvial deposits of study area show paleoenvironmental change from braided to low-sinuosity river plain under arid climatic condition to meandering river plain under seasonally wet an dry climatic condition. The stratigraphic successions of the Gyeongsang Supergroup of the study area Qacustrine-fluvial-Iacustrine) together with paleoenvironmental change of fluvial deposits suggest that those deposits can be correlated with the Banyaweol-Songnaedong-Geoncheonri formations of the Gyeongsang Supergroup in the western part of the Yangsan Fault.

  • PDF

Bird Tracks from the Gyeongsang Basin of the Korean Peninsula: A Paradise of Mesozoic Birds (중생대 새의 낙원 한반도 경상 분지에서 산출되는 새 발자국 화석)

  • Kim, Jeong Yul;Kim, Kyung Soo;Lim, Jong Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.1
    • /
    • pp.40-61
    • /
    • 2009
  • The Cretaceous Gyeongsang Supergroup, composed of clastic sediments mostly deposited in the lacustrine and fluvial environment, is widely distributed in the southern part of the Korean Peninsula. Diverse fossils of plants, molluscs, insects, footprints of dinosaurs, pterosaurs and birds, and eggs, bones, and teeth of dinosaurs have been found from the Gyeongsang Supergroup. New types of dinosaur, pterosaur, and bird tracks recently discovered from the Gyeongsang Supergroup attract great attention from the world. Several tracksites of dinosaurs and birds were designated as Natural Monument and nationally conserved, and many efforts have given to them for nomination of UNESCO World Heritage. Bird tracks from the Gyeonsang Supergroup are Koreanaornis hamanensis, Jindongornipes kimi, Goseongornipes markjonesi, Ignotornis yangi, Uhangrichnus chuni, and Hwangsanipes choughi, which correspond approximately one third of Mesozoic bird tracks recorded from the world. The Gyeongsang Basin of the Korean Peninsula yields world most diverse bird tracks which may be called a paradise of Mesozoic birds and they are important natural heritage providing significant information about evolution and paleogeographic distribution of birds.

Thermal Maturation and Diagenesis of the Gyeongsang Supergroup, Euiseong Area, SE Korea (의성지역 경상누층군의 열적진화와 속성작용)

  • Son Byeong-Kook;Cheong Tae-Jin;Oh lae-Ho;Kwak Young-Hoon
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.83-90
    • /
    • 1994
  • Thermal maturation and diagenesis of the Gyeongsang Supergroup in the Euiseong area are studied by means of organic geochemical techniques and illite crystallinity. Black mudrocks of the Singdong Group contain organic matter of $0.5{\~}2{\%}$ derived from higher plants, being compared to type Ⅲ. Thermal maturity of organic matter reached dry gas generation phase. Tmax by Rock Eval pyrolysis varies between $578^{\circ}C$ and $593^{\circ}C$ regardless of stratigraphic position and localities, and vitrinite reflectance is about 2.9 and $3{\~}4{\%}Ro$ in the Jinju and the Nagdong Formations, respectively. Vitrinite reflectance measurements indicate that the maturation is mainly due to burial and partly to be affected by post-depositional intrusions. Illite crystallinity values from the Nagdong, Hasandong, Jiniu Formations and part of the Iljig Formation are plotted around the boundary between diagenesis and anchizone, indicating dry gas generation stage. However, the values are not dependent on stratigraphic position. The values from the Iljig, Hupyeongdong, Geomgog, and Sagog Formations fall into the range of anchizone, probably resulted from the post-depositional intrusions which occur locally. Both organic geochemical and illite crystallinity data indicate thermal maturation stage of dry gas generation. Diagenesis of the Gyeongsang strata is mostly controlled by burial, and partly affected by post-depositional intrusions. Paleotemperature of the Sindong Group is estimated at around $200^{\circ}C$ on the basis of illite crystallinity.

  • PDF

Preliminary Results from Sandstone Petrography of the Icheonri Formation in Gijang-gun, Busan: Implications for Provenance and Tectonic Setting (부산 기장군에 분포하는 백악기 이천리층 사암 조성의 예비 연구: 기원지와 조구조 역사 해석에의 의의)

  • Young Ji Joo;Heeseon Yang;Kyeongtae Kim;Hyun Ju Kim
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.161-168
    • /
    • 2023
  • While numerous previous studies investigated the provenance and tectonic history of the Gyeongsang Supergroup, less are known about other Cretaceous strata in South Korea. This study presents preliminary results from petrographic analysis of the Cretaceous Icheonri Formation distributed in Gijang-gun, Busan. Based on the immature texture and composition of the Icheonri sediments, we interpret that they were derived from weakly denudated Cretaceous arc volcanoes developed along the eastern margin of the Asian continent, with limited weathering and transport. Additionally, the presence of chrome spinel grains in the sediments suggests the existence of ultramafic bodies exposed in their provenance. Further studies will advance our understanding of the tectonic developments in the southeastern Gyeongsang Basin, and facilitate a comprehensive correlation between the Icheonri Formation and the Gyeongsang Supergroup.

Floristic study of Mt. Jaamsan in the Gyeongsang supergroup, Korea (경상누층군 자암산의 관속식물상)

  • Kim, Jung-Hyun;Park, Hwan-Joon;Nam, Gi-Heum;Lee, Kyeong-Ui;Kim, Jin-Seok
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.3
    • /
    • pp.229-248
    • /
    • 2019
  • This study was carried out to investigate the flora of Mt. Jaamsan on the Gyeongsang supergroup, Korea. From the results of eight field surveys from March to October 2017, we have identified 530 total taxa, representing 483 species, eight subspecies, 35 varieties, two forms, and two hybrids, which were placed in 325 genera and 110 families. The plant formation of Mt. Jaamsan is the deciduous broad-leaved and conifer mixed forests, which are the common ones in the middle part of the Korean Peninsula. Most of the mountain is covered with young secondary forest, which is mainly composed of Quercus spp., and Pinus. Out of these 530 taxa, 12 are endemic to Korea, 17 taxa are listed on the Korean Red List of threatened species, 65 are floristic target species, and 55 are invasive alien species. The percentage of naturalized index(NI) and urbanization index (UI) were 10.4% and 17.2%, respectively. Mt. Jaamsan has a high plant diversity, including endemic and rare species, which consist of geomorphological landscapes. We considered that the composition and distribution of species are affected by the different environmental factors according to the sedimentary rocks, drying ridges, valleys, and streams. Together with the rocks and soils were the substrate type that play a major role in providing the unique habitats for sun plants in the area.

Petrogeochemistry of Shales in Cretaceous Gyeongsang Supergroup from the Euiseong Basin, Korea (의성분지(義城盆地)에 분포(分布)하는 백악기(白堊紀) 경상누층군(慶尙累層群)의 셰일에 관(關)한 암석지구화학(岩石地球化學))

  • Lee, Hyun Koo;Lee, Chan Hee;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • The shales from the Euiseong area are interbedded along the bedding in Cretaceous Gyeongsang Supergroup, which are composed mainly of quartz, plagioclase, K-feldspar and associated with trace amount of biotite, muscovite, chlorite, pyrite, hematite, carbonate and clay minerals. The ratio of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in shales from the Shindong Group are ranged from 9.16 to 24.32 and from 1.70 to 5.97, and the Hayang Group ranged from 2.76 to 8.89 and from 0.42 to 2.74, which are negative correlated between $K_2O/Na_2O$ and $Al_2O_3/Na_2O$ against $SiO_2/Al_2O_3$ respectively. Those are suggested that controlled of mineral compositions in shales due to substitution and migration of elements by sedimentation and diagenesis. These shale formation were deposited in basin of terrestrial environments originated from the igneous rocks, and the REE of these rocks are not influenced with diagenesis and hydrothermal alterations on the basis of $Al_2O_3$ versus La, La against Ce, Zr versus Yb, the ratios of La/Ce (0.43 to 0.62) and Th/U (1.11 to 10.71). The narrow range in trace and REE element characteristics as Co/Th (0.63 to 1.92), La/Sc (1.98 to 5.90), Sc/Th (0.58 to 1.30), V/Ni (0.90 to 3.25), Cr/V (0.45 to 1.78), Ni/Co (1.88 to 6.67) and Zr/Hf (30.04~60.87) of these shales argues for inefficient mixing of the simple source lithologies during sedimentation. These rocks also show much variation in $La_N/Yb_N$ (6.90 to 17.02), Th/Yb (4.17 to 13.68) and La/Th (1.98 to 5.90), and their origin is explained by derivation from a mixture of intermediate to acidic igneous rocks.

  • PDF

Engineering Properties of Some Sedimentary Rocks from the Gyeongsang Supergroup (경상계(慶尙系) 퇴적암(堆積岩)의 공학적(工學的) 성질(性質)에 관(關)한 연구(硏究))

  • So, Chil-Sup;Choi, Byoung-Ryol
    • Economic and Environmental Geology
    • /
    • v.8 no.4
    • /
    • pp.203-210
    • /
    • 1975
  • The engineering properties of some Gyeongsang sedimentary rocks with respect to the grain size and the orientation of bedding planes were studied. The suitability of the rocks for civil and architectural construction was also investigated. The porosity of the rocks increases in proportion to the grain size. The ratio of the strain due to stress perpendicular to the bedding planes to the strain resulting from stress parallel to the bedding planes increases as the grain size decreases. The study indicates however, that the ratio of Young's modulus due to stress perpendicular to the bedding planes to Young's modulus resulting from stress parallel to the bedding planes increases in proportion to the grain size. The compressive strength of the sandstones studied is much greater than the strength of the conglomerate or shale. Only the coarse grained sandstone can be used for civil and architectural construction, regardless of the orientation of bedding planes. The relationships between compressive strength and density, elasticity and porosity, and compressive strength and mineral content were also studied.

  • PDF

The Distribution Characteristics of Incised Meander River in the Korean Peninsula (한국에 있어서 감입곡류 하천의 분포 특성)

  • 송언근;조화룡
    • The Korean Journal of Quaternary Research
    • /
    • v.3 no.1
    • /
    • pp.17-34
    • /
    • 1989
  • The distribution characteristics of incised meander river are analysed concerning topography, geology, stream order and altitude. Additionally geomorphological development of the Korean peninsular is considered with incised meander. The main findings are as follows: 1. The incised meander is intensively distributed on the west and north slope of T'aebak and Sobaek mountain range, but sparsely distributed on the opposite slopes. 2. Geologically, the occurrence rate of incised meander is high orderly as follows: Joseon supergroup, Pyeongan supergroup, Daedong supergroup metamorphic rock, Gyeongsang supergroup, and granite. The incised meander is developed well on the following conditions: hard rocks against weathering, stratified structure, geologic arrange across the river channel and contacting zone of geological formations. 3. The higher stream orders are, the higher occurrence of incised meander is. 4. Comparing the altitude of present river bed with the summit level of restored map, it is supposed that the incised meander rivers have been dissected about 300-500m down ward. 5. Considering the distribution characteristic of incised meander, it is suggested that not only T'aebak mountain range but Sobaek mountain range is the axis of asymmetrical up-warping in the Korean peninsular. 6. Considering the distribution characteristic of incised meander on the restored map and the stream order, it seems that present incised meander channel was inherited from antecedent meander river that had flowed on High and Middle level erosion surface. But the channel pattern has been modified.

  • PDF

Sedimentological Study of the Nakdong Formation to analyse the Forming and Evolving Tectonics of the Cretaceous Gyeongsang Basin, I: Depositional Setting, Source, and Paleocurrent Analyses of the Nakdong Formation in the Southwestern Gyeongsang Basin (백악기 경상분지의 생성 및 진화에 관여한 지구조운동의 분석과 최하부 낙동층에 대한 퇴적학적 연구 I: 경상분지 서남단 낙동층의 퇴적환경과 기원암, 고수류 분석)

  • Cheong, Dae-Kyo;Kim, Yong-In
    • Economic and Environmental Geology
    • /
    • v.29 no.5
    • /
    • pp.639-660
    • /
    • 1996
  • The lowest formation of the Cretaceous Gyeongsang Supergroup, the Nakdong Formation, unconformably overlies the gneiss complex basement in Hadong, Gyeongsangnam-do and Gwangyang, Chullanam-do. The Nakdong Formation of the study area is 500-600 m thick and occurs as a belt shape. Based upon lithology, sedimentary structure, and bedding geometry the formation consists of three conglomerate facies (Gd, Gn, Gic), five sandstone facies (Sh-n, Sh-i, Sp, Sr, Sm), and four mudstone facies (Mf, Mfn, Mc, Mv). Sandstone facies are the most prominent in the study area. The twelve facies can be grouped into five facies associations. The depositional settings are elucidated from analyses of 12 facies and five facies associations of the formation. The lower part of the Nakdong Formation was deposited in alluvial plain, and the middle and upper parts were in a riverine system. The lithologies of the Nakdong Formation of the Gyeongsang Basin have been considered to consist of generally conglomerates and pebbly sandstones that were accumulated in alluvial fans. But the common lithology of the study area is sandstone which was formed in lower part of alluvial fan or fluvial setting. It is supposed that the coarser sedimentary sequence distributed west to the study area should be eroded out after deposition and early uplift, and the finer sandstone sequence in the east remains behind. The mineral composition of sandstones and the clast composition of conglomerates indicate that the Nakdong Formation was derived mainly from the metamorphic source rocks. Some reworked intraclasts were also supplied from the intrabasinal sedimentary layers. Paleocurrent data collected from cross-beddings, ripple marks, asymmetric sand dune suggest that most sediments were transported from north to south during the Nakdong Formation time.

  • PDF

Contact Metamorphism from the Aureoles of the Granitic Rocks, Ulsan-Eonyang Region (울산-언양 지역 화강암체 주변의 퇴적암류에 대한 접촉변성작용에 관한 연구)

  • Lee, Sang Won;Lee, Joon Dong;Kim, Jeong Jin
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.463-477
    • /
    • 1992
  • The study area consists of sedimentary and volcanic rocks of Gyeongsang Supergroup, granitoid intrusives, and hornfelses around the granitoids. Granitoid intrusives occur in small stocks in Nijeon-ri, Uggogri, and Yul-ri area. The masses in Nijeon-ri and Uggog-ri are hornblende-biotite granodiorite, biotite granodiorite respectively, and Yul-ri mass is biotite granite. Surrounding sediments of these masses were thermally metamorphosed and contact aureoles were formed. The studied granitoids are considered to be formed by sequential crystallization-differentiation from calc-alkalic granitoid magma. Metamorphic minerals occurring in contact aureole are chlorite, actinolite, epidote, and biotite. Diopside and hornblende are observed in small amount in some lithology around contact aureole. The lithology of contact aureole is predominantly silty and sandy, and characteristic metamorphic minerals were poorly developed because of low temperature metamorphism. Low temperature in contact aureole could be deduced from the facts that the intrusions were small size, shallow depth, low temperature, and rare movement of volatiles from magma.

  • PDF