• Title/Summary/Keyword: Gwangreung forest

Search Result 6, Processing Time 0.019 seconds

Distribution Status and Characteristics of Exotic Plants in the Gwangreung Forest, Korea

  • Kim, Sung-Sik;Lee, Se-Ra
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • To find out the status and characteristics of exotic plants in the Gwangreung Forest, a representative forest ecosystem in central Korea, we surveyed the species composition, coverage, and habitat illuminance of exotic plant species in a set of quadrats established along roads and trails in and around the Gwangreung Forest and buffer zone areas, In 1932, only five species of exotic plants were found along paths and roads in the Gwangreung Forest. However, the number of species in the forest has dramatically increased since 2000, when Ambrosia artemisiifolia L. and A. trifida L. were first recorded, and in 2007, 38 species of exotic plants were recorded. Among the 11 families, 23 genera and 25 species of exotic plants recorded in the quadrats, Compositae was the most common family (11 species), and perennial herbs, 42%, were the most frequently occurring life type, followed by annual herbs (31%) and biennial herbs (19%). Plants of North American origin comprised 48% of exotic species identified in our surveys. Exotics were found most frequently in quadrats along roads in the forest, followed by the buffer zones and hiking trails. The number of species and individuals of exotic plants decreased as we moved deeper into the forest, but Aster pilosus Willd. and Erigeron annuus (L.) Pers. were identified along hiking trails in the interior, and appeared to be capable of spreading further and more rapidly into the forest than other species.

A Case Study of Spatial Allocation of Cut Blocks Using a Timber Harvest Simulator HARVEST (산림수확 시뮬레이터 HARVEST 응용에 의한 벌채지 공간배치 사례연구)

  • Song, Jungeun;Jang, Kwangmin;Han, Hee;Seol, Ara;Chung, Woodam;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.96-103
    • /
    • 2012
  • In this study, we used HARVEST, a timber management strategy assessment tool, to evaluate alternative forest planning strategies on spatial pattern of cutting blocks. We applied the tool to the Gwangreung Experimental Forest (GEF) as a case study. The harvest schedules developed for GEF using a linear programming model was used to assess spatial patterns of cutting blocks under different management constraints. The results show that the allowable maximum harvest size largely affects the number, size, and distribution of cutting blocks. We also found that spatial dispersion methods and adjacency constraints could be used as an effective means to control spatial allocation of cutting blocks in order to meet certain forest ecosystem management goals.

A Case Study for Applying Linear Programming to Analyze The Effects of The Desired Future Conditions for Forest Functions on Forest Management (산림기능별 목표임상 조건이 산림경영에 미치는 영향분석을 위한 선형계획기법 적용 연구)

  • Jang, Kwangmin;Won, Hyun-Kyu;Seol, A Ra;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.247-254
    • /
    • 2009
  • In this study, linear programming was applied to a case study in Gwangreung Experimental Forest of Korea Forest Research Institute investigating the effect of the desired future conditions on forest management. Considering the social, economic and ecological demands of people from the forest, the forest functions were classified into four including natural conservation, timber production, water yield and scenic conservation. The forest land areas were divided into four-types of forest functional zones and forest management prescriptions including the desired future conditions by the forest function type were established. The Model II linear programming was used in optimizing the forest management planning. The model includes management policies, as the constraints, for non-declining yield, allowable cutting area, allowable % age class distribution and allowable % species allocation as well as the land and other accounting regimes. Maximization of timber production was used the objective function. Based on the Model II formulations, the effects of the desired future conditions by the forest function type on forest management planning were investigated in terms of timber production, net present value and stand structures over time.

Effect of New Mattress System with Vegetation Base Materials on the Vegetation Coverage of Stream bank (계안 복원을 위한 매트리스형 식생기반재 돌망태 공법의 계안사면 피복효과)

  • Choi, Hyung Tae;Jeong, Yong-Ho;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.175-184
    • /
    • 2012
  • This study was conducted to develop new mattress systems with vegetation base materials for protecting stream bank and rapid rehabilitation. Vegetation base materials are primarily compounded with fine soil, organic composts and peat moss as plant fibers, a water retainer and a soil improver. Peat moss can usually provide necessary natural fibers and organic materials in soil. Especially, peat moss can absorb up to 25 times its own weight in water and is therefore valued as a water retainer to prevent drying effect of vegetation base materials which can harm the growth of vegetation in mattresses. Normally mattress systems resist the lateral earth pressures or stream power by their own weight. Therefore, filled materials must have suitable weight, compressive strength and durability to resist the loading, as well as the effects of water and weathering. In this project, 100 to 200-mm clean, hard stones were basically specified, and about 50-mm rubbles were also used. Test application of new mattress system carried out in the stream bank of a small stream in the Gwangreung experimental forest, belonging to Korea Forest Research Institute (KFRI) in December 16th, 2006. As a result of the monitoring of vegetation coverage of test application plots (each plot size is 4 by 2 m), the coverage of all plots reached 100% in the end of May, 2007 (approximately 50 days passed after the first gemination of vegetation). The coverage of the plots using big hard stones and organic composts and the plots containing peat moss increased more rapidly. The results show that peat moss is effective to retain soil moisture and establish more sound environment for vegetation gemination.

Slope Stability Analysis of New Gabion Wall System with Vegetation Base Materials for Stream Bank Stability and Rehabilitation (계안 복원을 위한 식생기반재 돌망태 옹벽의 계안 안정효과 분석)

  • Choi, Hyung Tae;Jeong, Yong-Ho;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.130-137
    • /
    • 2012
  • This study has conducted to develop new gabion wall systems with vegetation base materials for stream bank stability and rapid rehabilitation. Vegetation base materials are primarily compounded with fine soil, organic composts and peat moss as plant fibers, a water retainer and a soil improver. Normally gabion wall systems resist the lateral earth pressures or stream power by their own weight. Therefore, fill material must have suitable weight, compressive strength and durability to resist the loading, as well as the effects of water and weathering. In this project, 100 to 200-mm clean, hard stones are basically specified, and about 50-mm rubbles are also used. Test application of new gabion wall system carried out in the stream bank of a small stream in the Gwangreung experimental forest, belonging to Korea Forest Research Institute (KFRI) in December 16th, 2006. As a result of the analysis of hydraulic stability of new gabion wall system, gabion wall system has highest threshold shear stress when the gabion wall covered by vegetation. New gabion wall system is highly resistant to sliding and overturning because safety coefficients exceed 1.5. As a result of term of slope stability analysis of new gabion wall system by Bishop and Fellenius methods, stability of stream bank was highly increased after the construction of gabion wall. Therefore, new gabion wall system is effective to stabilize unstable stream bank.

Influences of Forest Management Practices on pH and Electrical Conductivity in the Throughfall and Stemflow with the Abies holophylla and Pinus koraiensis Dominant Watershed (전나무림, 잣나무림 유역에서 수관통과우와 수간유하수의 수소이온농도 및 전기전도도에 미치는 산림시업의 영향)

  • Jeong, Yong-Ho;Kim, Kyong-Ha;Park, Jae-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.1 s.97
    • /
    • pp.52-61
    • /
    • 2002
  • This research was conducted to evaluate the effect of forest management practices on pH and electrical conductivity to get fundamental information on water purification capacity after forest operation. Rainfall, throughfall and stemflow were sampled at the study sites which consist of Abies holophylla and Pinus koraiensis in Gwangreung Experimental Forest for S months from May to November 1999. Mean pH of the throughfall of the beginning of the event was higher in management (thinning and pruning) sites of Abies holophylla and Pinus koraiensis stands than nonmanagement site of Abies holophylla and Pinus koraiensis stands. In addition, pH of the throughfall of the total amount of the event showed similar trends which are higher pH in the management sites compared with the non- management sites. This result indicates that managements such as thinning and pruning improve tree butler capacity of rainfall pH. According to the linear regression results, pH of the throughfall of the total amount of the event in non-management sites = 0.735${\times}$pH of the throughfall of the beginning of the event in non-management sites+1.849 ($R^2\;=\;0.82$) and pH of the throughfall of the total amount of the event in management sites= 0.863${\times}$pH of the throughfall of the beginning of the event in management sites +1.0242 ($R^2\;=\;0.87$). In case of stemflow pH, pH of the sternflow of the total amount of the event in non-management sites = 0.53${\times}$pH of the stemflow of the beginning of the event in non- management sites+2.7709 ($R^2\;=\;0.64$) and pH of the stemflow of the total amount of the event in management sites = 0.5854${\times}$pH of the stemflow of the beginning of the event in management sites+2.7045 ($R^2\;=\;0.65$). Electrical conductivity (EC) of the throughfall of the beginning and total amount of the event was highest in non- management site in Abies holophylla, followed by management sites in fsies Abies holophylla, non-management site in Pinus koraiensis, and management sites in Pinus koraiensis stands, respectively. According to the linear regression results, EC of the throughfall of the total amount of the event in non-managementsites = 0.4045${\times}$EC of the throughfall of the beginning of the event in non-management sites+26.766 ($R^2\;=\;0.69$) and EC of the throughfall of the total amount of the event in management sites = 0.6002${\times}$EC of the throughfall of the beginning of the event in management sites+8.0184 ($R^2\;=\;0.54$). In case of stemflow EC, EC of thestemflow of the total amount of the event in non-management sites = 0.6298${\times}$EC of the stemflow of the beginning of the event in non-management sites+11.582 ($R^2\;=\;0.72$) and pH of the stemflow of the total amount of the event in management sites =0.602${\times}$pH of the stemflow of the beginning of the event in management sites+20.783($R^2\;=\;0.49$).