• Title/Summary/Keyword: Gwangneung

Search Result 141, Processing Time 0.019 seconds

Biochemical Variation and Systematic Status of the Genus Agkistrodon (Crotalidae) in Korea (韓國産 살모사 屬에 關한 遺傳的 變異 및 系流學的 硏究)

  • Paik, Nam-Keuk;Kim, Yung-Jin;Yang, Suh-Yung
    • The Korean Journal of Zoology
    • /
    • v.22 no.4
    • /
    • pp.153-164
    • /
    • 1979
  • A total of 352 specimens of congeneric species of Agkistrodon was collected and morphometric analysis and starch-gel electrophoresis were carried out in order to investigate the taxonomic status of this genus. The results obtained in this study are as follows: Morphometric analysis 1. Three species are recognized based on Gloyd's criteria. There was no specimen that was doubtful to classify correctly. Therefore, it seems that Gloyd's morphological characters are good criteria to identify each species. 2. All three species are sympatric at two localities (Mt. Seolag, Gangwon-do, and Mt. Deogyu, Jeonra-bugdo) and A. caligino년 and A. b. brevicaudus are sympatric at Gwangneung and Mt. Yongmun, Gyonggi-do. No hybrids were found in these sympatric localities. 3. Notable sexual dimorphism was found in meristic characters. 4. A. saxatilis has signicantly more number of ventrals and shorter tail ratio than other two species. 5. There were no significant meristic character differences between A. caligino년 and A. b. brevicaudus. Genetic analysis 1. Among 26 loci investigated, 12 loci (46.1%) were identical in their mobility, 4 loci (15.4%) were nearly identical with minor frequency differences, and 10 loci (38.5%) showed interspecific mobility difference. 2. The average proportion of polymorphic loci was 9.03%. This is considerably less than that of other vertebrates. 3. The average S and D values between species are .695 and .342 respectively. These values indicate that three taxa are distinct species. 4. A. caliginosus is genetically more related to A. saxatilis than to Agkistrodon, namely A. b. brevicaudus, A. caligino년 and A. saxatilis, as proposed by Gloyd. Far from being mere morphological variants, as suggested by Kang and Yoon (1975), they are highly distinctive evolutionary units.

  • PDF

Atmospheric Acidic Deposition: Response to Soils and Forest Ecosystems (대기 산성 강하물: 토양과 삼림 생태계의 반응)

  • Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.28 no.6
    • /
    • pp.417-431
    • /
    • 2005
  • Soils of Korea experienced with long-term acidic deposition have been exhaustively leached exchangeable base cation (BC) for plant nutrient comparable with soils of forest decline areas in Europe and N. America. Ratios of $BC/Al^{3+}$ of most soils are below than 1, which value is critical load for plant growth. Acid soil applied with dolomitic liming is increased as much as 20% and 244% in concentrations of $Ca^{2+}$ and $Mg^{2+}$, respectively, as well as shrub leaves increase much cation uptake by 1 year later. Ions of $NO_3^-$ and $NH_4^+$ in acid rain are absorbed by the canopy acted as the sink but f is leached out from the canopy to throughfall as the source at Gwangneung forest with a little of acidic deposition, however, such sink and source functions are not found at Kwanaksan forest because of so much deposition. In coniferous and deciduous forested watershed ecosystems ions of $K^+$, $Cl^-$, $NO_3^-$ and $SO_4^{2-}$ from throughfall are retained in forest floor but ions of $Na^+, $Mg^{2+}$ and $Ca^{2+}$ are leached from the floor to streamwater.

Basic Research for the Efficient Management and Operation of Biosphere Reserves -: A Case Study of the Gwangneung Forest Biosphere Reserve - (생물권보전지역의 효율적 관리·운영방안 마련을 위한 기초연구 -광릉숲 생물권보전지역 사례로)

  • Chan-Young Park;Sung-Jin Yeom
    • Journal of Environmental Science International
    • /
    • v.32 no.6
    • /
    • pp.453-464
    • /
    • 2023
  • To this day, conflicts have intensified between managers who want to preserve biosphere reserves and citizen who want to develop them. Based on this problem, this study seeks to investigate the establishment of a forum for communication between various stakeholders and to promote the economic development of local communities while preserving biodiversity. First, in terms of conservation, the results indicated that Gyeonggi Province and Namyangju City highly valued direct conservation activities in biosphere reserves, whereas Pocheon and Uijeongbu City highly valued indirect conservation functions through management or monitoring. Second, in terms of development, it was found that there were differences in the roles, perceptions and responsibilities with respect to biosphere reserves among the different layers of government: the central government agency, the Cultural Heritage Administration, the metropolitan government, Gyeonggi-do, and the local governments, Pocheon, Namyangju, and Uijeongbu. Third, in terms of logistical support, which serves as a function for communication and practical participation among management entities, the results suggested that it was necessary to establish a comprehensive decision-making organization for efficient management and operation and to provide opportunities for active participation. The study can be utilized as a basic reference for developing efficient communication by management entities in protected areas with similar challenges.

Application of The Semi-Distributed Hydrological Model(TOPMODEL) for Prediction of Discharge at the Deciduous and Coniferous Forest Catchments in Gwangneung, Gyeonggi-do, Republic of Korea (경기도(京畿道) 광릉(光陵)의 활엽수림(闊葉樹林)과 침엽수림(針葉樹林) 유역(流域)의 유출량(流出量) 산정(算定)을 위한 준분포형(準分布型) 수문모형(水文模型)(TOPMODEL)의 적용(適用))

  • Kim, Kyongha;Jeong, Yongho;Park, Jaehyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.2
    • /
    • pp.197-209
    • /
    • 2001
  • TOPMODEL, semi-distributed hydrological model, is frequently applied to predict the amount of discharge, main flow pathways and water quality in a forested catchment, especially in a spatial dimension. TOPMODEL is a kind of conceptual model, not physical one. The main concept of TOPMODEL is constituted by the topographic index and soil transmissivity. Two components can be used for predicting the surface and subsurface contributing area. This study is conducted for the validation of applicability of TOPMODEL at small forested catchments in Korea. The experimental area is located at Gwangneung forest operated by Korea Forest Research Institute, Gyeonggi-do near Seoul metropolitan. Two study catchments in this area have been working since 1979 ; one is the natural mature deciduous forest(22.0 ha) about 80 years old and the other is the planted young coniferous forest(13.6 ha) about 22 years old. The data collected during the two events in July 1995 and June 2000 at the mature deciduous forest and the three events in July 1995 and 1999, August 2000 at the young coniferous forest were used as the observed data set, respectively. The topographic index was calculated using $10m{\times}10m$ resolution raster digital elevation map(DEM). The distribution of the topographic index ranged from 2.6 to 11.1 at the deciduous and 2.7 to 16.0 at the coniferous catchment. The result of the optimization using the forecasting efficiency as the objective function showed that the model parameter, m and the mean catchment value of surface saturated transmissivity, $lnT_0$ had a high sensitivity. The values of the optimized parameters for m and InT_0 were 0.034 and 0.038; 8.672 and 9.475 at the deciduous and 0.031, 0.032 and 0.033; 5.969, 7.129 and 7.575 at the coniferous catchment, respectively. The forecasting efficiencies resulted from the simulation using the optimized parameter were comparatively high ; 0.958 and 0.909 at the deciduous and 0.825, 0.922 and 0.961 at the coniferous catchment. The observed and simulated hyeto-hydrograph shoed that the time of lag to peak coincided well. Though the total runoff and peakflow of some events showed a discrepancy between the observed and simulated output, TOPMODEL could overall predict a hydrologic output at the estimation error less than 10 %. Therefore, TOPMODEL is useful tool for the prediction of runoff at an ungaged forested catchment in Korea.

  • PDF

Analysis of Growth Characteristics and Aboveground Carbon Storage for Zelkova serrata Artificial Forests in Gwangneung Experimental Forest (광릉시험림 내 느티나무(Zelkova serrata) 인공림의 생장특성 및 지상부 탄소저장량 분석)

  • Kim, Hyun-Seop;Bae, Sang-Won;Lee, Sang-Tae;Hwang, Jae-Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.144-152
    • /
    • 2010
  • This study was conducted to analyze the growth characteristics and aboveground carbon storage for old growth Zelkova serrata artificial forests (site1: age class IX, site2: age class VIII) in Gwangneung Experimental Forest. The trees were classified by crown classes for analyzing forest stand structure. The growth characteristics were analized through ringwidth increment by crown classes and stem analysis of dominant trees. There were a wide range of DBH (site1: 8~62 cm, site2: 14~40 cm) and height (site1: 8~26 m, site2: 12~26 m) distributions and revealed different growth characteristics by crown classes in both sites. The mean annual increment (MAI) of ringwidth for the last 5 years of dominant trees for site1 (3.3 mm) was higher than MAI of ringwidth of total growth period (2.3 mm) and MAI of ringwidth for the last 5 years of dominant trees for site2 (2.2 mm) was equal to MAI of ringwidth of total growth period (2.2 mm). Also, the growth increment of ringwidth by crown classes had significant differences between dominant tree and the others crown classes (p<0.01) in both sites. As a results of stem analysis of dominant trees in both sites, there were similar to their volume between site1 (1.106 $m^3$) and site2 (1.035 $m^3$). In spite of old age, the annual increment of volume has been increasing steadily until recent year. Meanwhile, total aboveground carbon storage of site1 (65.6 Mg C $ha^{-1}$) was higher than that of site2 (56.1 Mg C $ha^{-1}$). The proportion of dominant and co-dominant trees to total aboveground carbon storage was more than 90% and the greatest individual aboveground carbon storage by crown classes was dominant tree in all both sites. However, individual aboveground carbon storage of dominant tree in site1 had 0.054 Mg C $tree^{-1}$ more than site2 owing to the differences from average DBH of dominant trees by sites. We think that these results will contribute to the forest practice for Zelkova serrata artificial forests as a basic information.

A Sensitivity Analysis of JULES Land Surface Model for Two Major Ecosystems in Korea: Influence of Biophysical Parameters on the Simulation of Gross Primary Productivity and Ecosystem Respiration (한국의 두 주요 생태계에 대한 JULES 지면 모형의 민감도 분석: 일차생산량과 생태계 호흡의 모사에 미치는 생물리모수의 영향)

  • Jang, Ji-Hyeon;Hong, Jin-Kyu;Byun, Young-Hwa;Kwon, Hyo-Jung;Chae, Nam-Yi;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.107-121
    • /
    • 2010
  • We conducted a sensitivity test of Joint UK Land Environment Simulator (JULES), in which the influence of biophysical parameters on the simulation of gross primary productivity (GPP) and ecosystem respiration (RE) was investigated for two typical ecosystems in Korea. For this test, we employed the whole-year observation of eddy-covariance fluxes measured in 2006 at two KoFlux sites: (1) a deciduous forest in complex terrain in Gwangneung and (2) a farmland with heterogeneous mosaic patches in Haenam. Our analysis showed that the simulated GPP was most sensitive to the maximum rate of RuBP carboxylation and leaf nitrogen concentration for both ecosystems. RE was sensitive to wood biomass parameter for the deciduous forest in Gwangneung. For the mixed farmland in Haenam, however, RE was most sensitive to the maximum rate of RuBP carboxylation and leaf nitrogen concentration like the simulated GPP. For both sites, the JULES model overestimated both GPP and RE when the default values of input parameters were adopted. Considering the fact that the leaf nitrogen concentration observed at the deciduous forest site was only about 60% of its default value, the significant portion of the model's overestimation can be attributed to such a discrepancy in the input parameters. Our finding demonstrates that the abovementioned key biophysical parameters of the two ecosystems should be evaluated carefully prior to any simulation and interpretation of ecosystem carbon exchange in Korea.

Throughfall, Stemflow and Interception Loss of the Natural Old-growth Deciduous and Planted Young Coniferous in Gwangneung and the Rehabilitated Young Mixed Forest in Yangju, Gyeonggido(I) - with a Special Reference on the Results of Measurement - (광릉(光陵) 활엽수(闊葉樹) 천연노령림(天然老齡林)과 침엽수(針葉樹) 인공유령림(人工幼齡林) 그리고 양주(楊洲) 사방지(砂防地) 혼효유령림(混淆幼齡林)의 수관통과우량(樹冠通過雨量), 수간유하량(樹幹流下量) 그리고 차단손실량(遮斷損失量)에 관하여(I) - 실험적(實驗的) 측정결과(測定結果)를 중심(中心)으로 -)

  • Kim, Kyongha;Jun, Jaehong;Yoo, Jaeyun;Jeong, Yongho
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.488-495
    • /
    • 2005
  • This study was conducted to understand the influences of forest structure on throughfall, stemflow and interception loss. The study plots included the natural old-growth deciduous, Pinus koraiensis and Abies holophylla forests in Gwangneung and the rehabilitated young mixed forest in Yangju, Gyeonggido. The Pinus koraiensis and Abies hotophylla had been planted in 1976. The rehabilitated young mixed forest had been established to control erosion in 1974. Total and net rainfall were monitored from March, 2003 to October, 2004. Tipping bucket rain gauge recorded total rainfall. Throughfall and stemflow were measured by custom-made tipping bucket and CR10X data logger at each $10m{\times}10m$ plots at intervals of 30 minutes. Interception loss in the Pinus koraiensis plot were most as 37.2% of total rainfall and least as 22.6% in the rehabilitated young mixed forest. Stemflow in the rehabilitated young mixed forest was 10.7% of total rainfall and stemflow in the Pinus koraiensis plot was 2.4%. The average throughfall ratio ranged from 66% to 77% depending on the canopy coverage. The relationship of stemflow and total rainfall represented in a linear regression equation though the variation of data was large. The ratio of stemflow-conversion was 2% of total rainfall in the Pinus koraiensis plot and 12% in the rehabilitated young mixed forest, respectively. The stem storage of the natural old-growth deciduous was the largest of 0.21 mm whereas that of the Pinus koraiensis plot was the least of 0.003 mm. A deciduous forest produced stemflow more than a coniferous forest due to a smooth bark and steeply angled branches. Interception loss of all study plots increased linearly as total rainfall increased. The distribution of interception loss data related in total rainfall became wider in a deciduous forest than a coniferous. It resulted from seasonality of leaf area index in a deciduous forest. As considered above results, it was confirmed that there were great differences of throughfall, stemflow and interception loss depending on forest stand structures. The simulation model for predicting interception loss must have parameters such as forest stand characteristics and LAI in order to describe the influence of forest structure on interception loss.

Interactions and Changes between Sapflow Flux, Soil Water Tension, and Soil Moisture Content at the Artificial Forest of Abies holophylla in Gwangneung, Gyeonggido (광릉 전나무인공림에서 수액이동량, 토양수분장력 그리고 토양함수량의 변화와 상호작용)

  • Jun, Jaehong;Kim, Kyongha;Yoo, Jaeyun;Jeong, Yongho;Jeong, Changgi
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.496-503
    • /
    • 2005
  • This study was conducted to investigate the influences of sapflow flux on soil water tensions and soil moisture content at the Abies holophylla plots in Gwangneung, Gyeonggido, from September to October 2004. The Abies holophylla had been planted in 1976 and thinning and pruning were carried out in 1996 and 2004. Sapflow flux was measured by the heat pulse method, and soil water tension was measured by tensiometer at hillslope and streamside. Time domain reflectometry probes (TDR) were positioned horizontally at the depth of 10, 30 and 50 cm to measure soil moisture content. All of data were recorded every 30 minutes with the dataloggers. The sapflow flux responded sensitively to rainfall, so little sapflow was detected in rainy days. The average daily sapflow flux of sample trees was 10.16l, a maximum was 15.09l, and a minimum was 0.0l. The sapflow flux's diurnal changes showed that sapflow flux increased from 9 am and up to 0.74 l/30 min. The highest sapflow flux maintained by 3 pm and decreased almost 0.0 l/30 mm after 7 pm. The average soil water tensions were low ($-141.3cmH_2O$, $-52.9cmH_2O$ and $-134.2cmH_2O$) at hillslope and high ($-6.1cmH_2O$, $-18.0cmH_2O$ and $-3.7cmH_2O$) at streamside. When the soil moisture content decreased after rainfall, the soil water tension at hillslope responded sensitively to the sapflow flux. The soil water tension decreased as the sapflow flux increased during the day time, whereas increased during the night time when the sapflow flux was not detected. On the other hand, there was no significant relationship between soil water tension and sapflow flux at streamside. Soil moisture content at hillslope decreased continuously after rain, and showed a negative correlation to sapflow flux like a soil water tension at hillslope. As considered results above, it was confirmed that the response of soil moisture tension to sapflow flux at hillslope and streamside were different.

On Securing Continuity of Long-Term Observational Eddy Flux Data: Field Intercomparison between Open- and Enclosed-Path Gas Analyzers (장기 관측 에디 플럭스 자료의 연속성 확보에 대하여: 개회로 및 봉폐회로 기체분석기의 야외 상호 비교)

  • Kang, Minseok;Kim, Joon;Yang, Hyunyoung;Lim, Jong-Hwan;Chun, Jung-Hwa;Moon, Minkyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.135-145
    • /
    • 2019
  • Analysis of a long cycle or a trend of time series data based on a long-term observation would require comparability between data observed in the past and the present. In the present study, we proposed an approach to ensure the compatibility among the instruments used for the long-term observation, which would allow to secure continuity of the data. An open-path gas analyzer (Model LI-7500, LI-COR, Inc., USA) has been used for eddy covariance flux measurement in the Gwangneung deciduous forest for more than 10 years. The open-path gas analyzer was replaced by an enclosed-path gas analyzer (Model EC155, Campbell Scientific, Inc., USA) in July 2015. Before completely replacing the gas analyzer, the carbon dioxide ($CO_2$) and latent heat fluxes were collected using both gas analyzers simultaneously during a five-month period from August to December in 2015. It was found that the $CO_2$ fluxes were not significantly different between the gas analyzers under the condition that the daily mean temperature was higher than $0^{\circ}C$. However, the $CO_2$ flux measured by the open-path gas analyzer was negatively biased (from positive sign, i.e., carbon source, to 0 or negative sign, i.e., carbon neutral or sink) due to the instrument surface heating under the condition that the daily mean temperature was lower than $0^{\circ}C$. Despite applying the frequency response correction associated with tube attenuation of water vapor, the latent heat flux measured by the enclosed-path gas analyzer was on average 9% smaller than that measured by the open-path gas analyzer, which resulted in >20% difference of the sums over the study period. These results indicated that application of the additional air density correction would be needed due to the instrument heat and analysis of the long-term observational flux data would be facilitated by understanding the underestimation tendency of latent heat flux measurements by an enclosed-path gas analyzer.

The Quantity and Pattern of Leaf Fall and Nitrogen Resorption Strategy by Leaf-litter in the Gwangneung Natural Broadleaved Forest (광릉숲 천연활엽수림의 수종별 낙엽 현상과 질소 재전류 특성)

  • Kwon, Boram;Kim, Hyunseok;Yi, Myong Jong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.208-220
    • /
    • 2019
  • The seasonality of leaf fall has important implications for understanding the response of trees' phenology to climate change. In this study, we quantified the leaf fall pattern with a model to estimate the timing and speed of leaf litter according to species and considered the nutrient use strategy of canopy species. In the autumns of 2015 and 2016, leaf litter was collected periodically using 36 litter-traps from the deciduous forests in Gwangneung and sorted by species. The seasonal leaf fall pattern was estimated using the non-linear regression model of Dixon. Additionally, the resorption rate was calculated by analyzing the nitrogen concentration of the leaf litter at each collection time. The leaf litter generally began in early October and ended in mid-November depending on the species. At the peak time (T50) of leaf fall, on average, Carpinus laxiflora was first, and Quercus serrata was last. The rate of leaf fall was fastest (18.6 days) for Sorbus alnifolia in 2016 and slowest (40.8 days) for C. cordata in 2015. The nitrogen resorption rates at T50 were 0.45% for Q. serrata and 0.48% for C. laxiflora, and the resorption rate in 2015 with less precipitation was higher than in 2016. Since falling of leaf litter is affected by environmental factors such as temperature, precipitation, photoperiod, and $CO_2$ during the period attached foliage, the leaf fall pattern and nitrogen resorption differed year by year depending on the species. If we quantify the fall phenomena of deciduous trees and analyze them according to various conditions, we can predict whether the changes in leaf fall timing and speed due to climate change will prolong or shorten the growth period of trees. In addition, it may be possible to consider how this affects their nutrient use strategy.