• Title/Summary/Keyword: Gwangju Stream

Search Result 74, Processing Time 0.031 seconds

Evaluation of Pollutant Characteristics in Yeongsan River Using Multivariate Analysis (영산강 수계 오염특성 파악을 위한 다변량 통계분석법의 적용)

  • Jung, Soojung;Lee, Dongjin;Hwang, Kyungsup;Lee, Kyounghee;Choi, Kyoungchuk;Im, Sangsun;Lee, Yunhee;Lee, Jaeyoung;Lim, Byoungjin
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.368-377
    • /
    • 2012
  • This study evaluated the water quality of Yeongsan River by multivariate analysis using the data collected during 2001~2010. Water quality in Yeongsan River could be explained up to 75.2% by four factors, which were included in loading of nutrients (32.021%) and organic matters (17.453%), seasonal variation (14.775%) and microbes (10.951%). The results of cluster analysis were classified into three groups by factor 1 and 2, which has different water quality characteristics. Group 1 included sampling stations located in the upper stream and estuary dyke of Yeongsan River, group 2 included Gwangju 1 and Gwangsan affected by domestic sewage of Gwangju-cheon, and group 3 included sampling stations located in the midstream around the livestock farm and farmland.

The Whole Effluent Toxicity Tests of Wastewater Discharged from Various Wastewater Treatment Plants and Their Impact Analyses on Biological Component (폐수처리장의 전 방류수 독성 평가 및 방류수 배출하천의 생지표도 영향분석)

  • Ra, Jin-Sung;Kim, Sang-Don;An, Kwang-Guk;Chang, Nam-Ik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.353-361
    • /
    • 2005
  • In this study, we performed whole effluent toxicity(WET) test and compared the biological component analyses tests for some streams into which wastewater treatment plant effluents are discharged. The test procedures for the WET test and the biological component analysis were conducted according to U.S. EPA guidelines and the Ohio EPA wading method. The WET tests based on the test species of D. manga and S. capricornutum All treatment plants showed a S. capricornutum toxicity, and at 7 sites, except A and J, we could observe a D. magna toxicity. The highest toxicity was observed at site D and this were followed by E and F. The biological component analyses applied to the effluent discharged stream. We found that total species were low at sites C1, D1 and J1 and the low number of total individuals were observed at sites A1, C1, E1, H1, and J1 compared to the controls and other sites. The species richness was low at sites A1, B1, C1, D1, and J1. The species change was evident at site D(D1) and the tolerant species was predominant. The biological analyses and WET tests suggested that the effluents resulted in massive ecosystem impact.

The Analysis of Perchlorate in Nakdong River and Tap Water (낙동강 수계 및 수돗물에서의 Perchlorate($ClO_4^-$) 분석)

  • Kim, Hwa-Bin;Oh, Jeong-Eun;Lee, Sung-Yun;Cho, Jae-Weon;Snyder, Shane
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.776-781
    • /
    • 2006
  • Perchlorate ion($ClO_4^-$), which is present in the solid propellant for rocket, herbicide and some fertilizers. Perchlorate inhibits iodide uptake by the human thyroid gland. Impairment of thyroid function in expectant mothers may impact the fetus and result in effects including cerebral palsy, give rise to thyroid gland cancer. The US EPA(Environmental Protection Agency) adopted a reference dose(RfD) for perchlorate 0.0007 mg/kg-day, and this guidance lead to a Drinking Water Equivalent Level(DWEL) of 24.5 ${\mu}g/L$. The studies about perchlorate are actively performed in foreign countries, especially in USA but there is no study which surveyed the perchlorate contamination in Korea. Therefore, this study was done to investigate perchlorate contamination in Nak-dong river and tap water. The perchlorate was detected in Nakdong river and ranged from ND to 278.4 ${\mu}g/L$. The highest concentration was observed in Kumichon. The perchlorate concentration was decreased with the down stream of Nakdong river. The perchlorate concentration in tap water was varied with the cities and the concentration levels were $ND{\sim}34.1$ ppb. The highest perchlorate concentration was observed in DalsuGoo in Daegu and the similar concentration($9{\sim}11$ ${\mu}g/L$) was detected in most of the districts in Busan. The result of this study suggests that there is a perchlorate source near the Nakdong river and the urgent policy is needed to control perchlorate for the cities which are supplied from Nakdong river as for their tap water.

A Preliminary Verification of the Influences of Hydrologic Regime Change and Nutrients Influx on Vegetation Recruitment on Riparian Bars (하천식생 이입 현상에 대한 수문현상 변화와 영양염류 영향의 예비 검증)

  • Woo, Hyoseop;Kang, Joon-goo;Cho, Hyung-Jin;Choi, Yi-song;Park, Moon-hyeong
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.284-290
    • /
    • 2015
  • In this study, two hypotheses were examined to preliminarily verify for the vegetation recruitment and establishment on riparian bars in unregulated rivers; hydrologic regime change and nutrients influx into streams. In order to preliminarily verify the first hypothesis, precipitation patterns were analyzed during a period from March through to May when reeds, the most common riparian vegetation in Korea, germinate and start to grow in riparian areas. The results show that during the last 35 years, the total precipitation during the three-month period decreased by about 15 %, while the total annual one increased by about 15% in Korea. In order to verify the second hypothesis, a preliminary experiment was conducted with a set of two-vegetative flumes for one year. In this experiment, a stream flow with reeds on the riparian sand bars was simulated with a flume with reeds planted on the sand bed and water with a concentration of 3.5 mg of N flowing in the flume for four hours. For comparison, clean water was circulated in the same way in another flume for simulating a stream flow without N. The experimental results show that the growth rate of reeds in N-mixed flow exceeds that in clean water flow by about 30%. The above two results could explain the phenomenon of change in unregulated rivers from white river to green river in Korea, although they were obtained through limited extents of analysis and experiment.

Applications and Perspectives of Fluvial Biogeomorphology in the Stream Management of South Korea (우리나라 하천 관리에서 생물지형학의 적용과 전망)

  • Kim, Daehyun;Kim, Won;Kim, Eunsuk;Ock, Giyoung;Jang, Chang-Lae;Choi, Mikyoung;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • In fluvial and riparian ecosystems, biogeomorphological research has considered the complex, multi-way relationships between biological and hydro-geomorphological components over a wide range of spatial and temporal scales. In this review, we discussed the scope and processes of fluvial biogeomorphology by explaining (1) the multi-lateral interactions between organisms and hydrogeomorphic conditions, (2) the relationships between biodiversity and habitat heterogeneity, and (3) the effects of disturbance on ecosystem patterns. Over time, an organism-landform complex along streams transitions in the sequences of geomorphic, pioneer, biogeomorphic, and ecological stages. Over space, water flow and sediment distributions interact with vegetation to modify channel topography. It is the habitat heterogeneity in streams that enhances riparian biodiversity. However, in the areas downstream of a dam, habitat types and conditions are substantially damaged and biodiversity should be reduced. In South Korea, riparian vegetation flourishes in general and, in particular, invasive species actively colonize in accordance with the changes in the fluvial conditions driven by local disturbances and global climate change. Therefore, the importance of understanding reciprocal relationships between living organisms and hydrogeomorphic conditions will ever increase in this era of rapid climate change and anthropogenic pressure. The fluvial biogeomorphic framework reviewed in this article will contribute to the ecological management and restoration of streams in Korea.

An Effective of Rate Control for Scene Change in H.264/AVC (장면전환에 효율적인 H.264/AVC 비트율 제어 기법)

  • Son, Nam-Rye;Shin, Yoon-Jeong;Lee, Guee-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.26-39
    • /
    • 2007
  • In recent years, rate control is an important technique in real time video communication applications using H.264/AVC. Many existing rate control algorithms employ the quadratic rate-distortion model, which is determine the target bits for each P frame. In this paper, a new rate control algorithm for transmission of H.264/AVC video bit stream through CBR(Constant Bit Rate) channel is proposed. The proposed algorithm predicts an adaptive QP(Quantization Parameter) for improving video distortion, due to high motion and abruptly scene change, which target bit rate and MAD(Mean of Absolute Difference) for current frame considering image complexity variance between previous and current frames. Additionally, it uses frame skip technique to maintain bit stream within a manageable range and protect buffer from overflow or underflow. Experimental results show that the proposed method gives a quality improvement of about 0.5dB when compared to previous rate control algorithm. Also our proposed algorithm encodes the video sequences with less frame skipping compared to the existing rate control for H.264/AVC.

Ecohydraulics - the significance and research trends (생태수리학의 의의와 전망)

  • Woo, Hyoseop
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.833-843
    • /
    • 2020
  • Ecohydraulics is a newly born discipline in the early 1990s by the interdisciplinary approach combined with aquatic ecology in one discipline and geomorphology, hydrology, and fluid hydrodynamics in another. Major areas of ecohydraulics can be delineated as habitat hydraulics (including environmental flow), vegetation hydraulics, eco-corridor hydraulics, eutrophication hydraulics, and ecological restoration hydraulics. Reviews of relevant international journals and literature reveal that ecohydraulics has remained in the limited areas of fish response, hydraulic modeling, and physical habitat response. It has not reached a truly interdisciplinary stage. Literature reviews in Korea reveal that only 3% of the total number of the papers listed in the Journal of KWRA during the last 24 years is related to ecohydraulics. It is about 20% of the total listed in the Journal of Ecology and Resilient Infrastructure. Most of those related to ecohydraulics in Korea concern vegetation hydraulics, habitat hydraulics, and ecological restoration hydraulics. In contrast, dynamic flow modeling areas, including turbulence, fauna motion simulation, and eutrophication hydraulics, are not found. Areas of further research in ecohydraulics in Korea may be specified as follows: 1) environmental flows adapted to the traits of the rivers in Korea, 2) development of the dynamic floodplain vegetation models (DFVM) to assess the changes from the white river to green river, 3) development of the eutrophication hydraulic model to predict the freshwater algal blooms, and 4) development of the models to evaluate the physical, chemical, and biological impacts of the stream restoration, decommissioning and removal of old weirs or small dams.

Assessment of sediment and total phosphorous loads using SWAT in Oenam watershed, Hwasun, Jeollanam-do (SWAT 모델을 이용한 외남천 유역의 토사 및 총인 유출량 분석)

  • Lee, Taesoo
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.240-250
    • /
    • 2016
  • Monitoring for water quantity and quality was conducted in this study for 2 years (2012~2013) in Oenam Stream which is a tributary of Seomjin River and upstream of Juam Lake. Suspended solid and total phosphorous(TP) were monitored and analyzed, then water quantity and quality as well as their relation with landuses were identified based on the previous study. Flow showed the similar pattern with precipitation but some discrepancies existed due to the distance between weather station(Gwangju) and study area. Watershed was modeled based on observed data using SWAT(Soil and Water Assessment Tool). Model calibration was conducted using data obtained in 2012 and validation was conducted using data in 2013. The coefficient of determination ($R^2$) between observed and modeled showed 0.6644 and 0.5176 for flow and TP, respectively for model calibration period. For validation period, $R^2$ was 0.7529 for flow and 0.7057 for TP, which were higher than calibration period. Hot spots were determined for watershed management by analyzing the amount of sediment and TP outcome from each sub-watershed. TP loading by landuse determined that cropland, of which the area takes only 5% from entire watershed, generated 53.6% of TP and residential and cowshed was responsible for 23.5% of TP loading.

  • PDF

Estimation of Water Quality Environment in Youngsan and Seumjin River Basins (영산강과 섬진강 유역의 하천 수질환경 평가)

  • 양해근;최희철
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.1
    • /
    • pp.16-31
    • /
    • 2003
  • The water quality environment in Youngsan and Seumjin river basins was investigated based on the concept of the comprehensive Water Quality Index (WQI) and a spacial pollution source. Artificial factors influencing to river water quality have been analyzed. The specific delivery load of Youngsan river basin was found to be 8.34~97.25 kg/day/$\textrm{km}^2$, Gomagwon stream and Gwangju stream showed the relatively high rates as 97.25 kg/day/$\textrm{km}^2$ and 86.06 kg/day/$\textrm{km}^2$, respectively. The specific delivery load in Seumjin river basin was estimated to be 10.98∼19.51 kg/day/$\textrm{km}^2$, Suggesting no Significant Contribution of pollution. WQI of Youngsan watershed revealed 1.36~3.45, whereas Seumjin watershed showed a relatively low value of 0.5~1.47 And it is concluded that the specific delivery load suggested in this study provides the essential core data of the upper limit of pollutants receptor in the watershed area studied. From this study, it is suggested that the integrated environmental management of river basin requires the analysis of pollutants generation rate of the basin and the receptor capability for the self-purification.

The different Polyphenism by the Level of Predation Risk and Habitat in Larval Salamander, Hynobius ieechii (한국산 도롱뇽의 포식압과 서식지에 따른 polyphenism)

  • Hwang, Ji-Hee;Chung, Hoon
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.744-750
    • /
    • 2010
  • This study examined the different polyphenism of larval salamander Hynobius ieechii according to two habitats, pond and stream. We collected salamander's eggs from three regions including Mountain Inwang, Surak and Gwangju. Eggs were treated by four different conditions according to predation level and habitat: high risk - which had a predation risk three times a day; low risk - which had no predation risk, pond and stream habitat. Predation risk was conducted by using chemical cue from Chinese minnows. The chemical cue treatment started from the day of collection and ended one week after the hatching. After the treatment phase, we measured the head width at the level of the eyes(HWE) and the largest head width(LHW) and snout-vent length of the each larva. We calculated the ratio of the head size by dividing HWE by LHW and made a comparison with each of the average ratio of head size according to the predation risk. The results showed that there was a significant difference in the ratio of the head size and snout-vent length according to the predation risk and habitat. From these results we found that predation risk and habitat condition can cause the different polyphenism to the larval salamander and these morphological changes could be affect their mortality.