• Title/Summary/Keyword: Gust Field

Search Result 48, Processing Time 0.02 seconds

Towards performance-based design under thunderstorm winds: a new method for wind speed evaluation using historical records and Monte Carlo simulations

  • Aboshosha, Haitham;Mara, Thomas G.;Izukawa, Nicole
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.85-102
    • /
    • 2020
  • Accurate load evaluation is essential in any performance-based design. Design wind speeds and associated wind loads are well defined for synoptic boundary layer winds but not for thunderstorms. The method presented in the current study represents a new approach to obtain design wind speeds associated with thunderstorms and their gust fronts using historical data and Monte Carlo simulations. The method consists of the following steps (i) developing a numerical model for thunderstorm downdrafts (i.e. downbursts) to account for storm translation and outflow dissipation, (ii) utilizing the model to characterize previous events and (iii) extrapolating the limited wind speed data to cover life-span of structures. The numerical model relies on a previously generated CFD wind field, which is validated using six documented thunderstorm events. The model suggests that 10 parameters are required to describe the characteristics of an event. The model is then utilized to analyze wind records obtained at Lubbock Preston Smith International Airport (KLBB) meteorological station to identify the thunderstorm parameters for this location, obtain their probability distributions, and utilized in the Monte Carlo simulation of thunderstorm gust front events for many thousands of years for the purpose of estimating design wind speeds. The analysis suggests a potential underestimation of design wind speeds when neglecting thunderstorm gust fronts, which is common practice in analyzing historical wind records. When compared to the design wind speed for a 700-year MRI in ASCE 7-10 and ASCE 7-16, the estimated wind speeds from the simulation were 10% and 11.5% higher, respectively.

Observational study of wind characteristics from 356-meter-high Shenzhen Meteorological Tower during a severe typhoon

  • He, Yinghou;Li, Qiusheng;Chan, Pakwai;Zhang, Li;Yang, Honglong;Li, Lei
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.575-595
    • /
    • 2020
  • The characteristics of winds associated with tropical cyclones are of great significance in many engineering fields. This paper presents an investigation of wind characteristics over a coastal urban terrain based on field measurements collected from multiple cup anemometers and ultrasonic anemometers equipped at 13 height levels on a 356-m-high meteorological tower in Shenzhen during severe Typhoon Hato. Several wind quantities, including wind spectrum, gust factor, turbulence intensity and length scale as well as wind profile, are presented and discussed. Specifically, the probability distributions of fluctuating wind speeds are analyzed in connection with the normal distribution and the generalized extreme value distribution. The von Karman spectral model is found to be suitable to depict the energy distributions of three-dimensionally fluctuating winds. Gust factors, turbulence intensity and length scale are determined and discussed. Moreover, this paper presents the wind profiles measured during the typhoon, and a comparative study of the vertical distribution of wind speeds from the field measurements and existing empirical models is performed. The influences of the topography features and wind speeds on the wind profiles were investigated based on the field-measured wind records. In general, the empirical models can provide reasonable predictions for the measured wind speed profiles over a typical coastal urban area during a severe typhoon.

Field measurements of natural periods of vibration and structural damping of wind-excited tall residential buildings

  • Campbell, S.;Kwok, K.C.S.;Hitchcock, P.A.;Tse, K.T.;Leung, H.Y.
    • Wind and Structures
    • /
    • v.10 no.5
    • /
    • pp.401-420
    • /
    • 2007
  • Field measurements of the wind-induced response of two residential reinforced concrete buildings, among the tallest in the world, have been performed during two typhoons. Natural periods and damping values have been determined and compared with other field measurements and empirical predictors. Suitable and common empirical predictors of natural period and structural damping have been obtained that describe the trend of tall, reinforced concrete buildings whose structural vibrations have been measured in the collection of studies in Hong Kong compiled by the authors. This data is especially important as the amount of information known about the dynamic parameters of buildings of these heights is limited. Effects of the variation of the natural period and damping values on the alongwind response of a tall building for serviceability-level wind conditions have been profiled using the gust response factor approach. When using this approach on these two buildings, the often overestimated natural periods and structural damping values suggested by empirical predictors tended to offset each other. Gust response factors calculated using the natural periods and structural damping values measured in the field were smaller than if calculated using design-stage values.

Near-ground boundary layer wind characteristics analysis of Typhoon "Bailu" based on field measurements

  • Dandan Xia;Li Lin;Liming Dai;Xiaobo Lin
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.15-30
    • /
    • 2024
  • In this paper, detailed wind field data of the full path of typhoon "Bailu" were obtained based on site measurements. Typhoon "Bailu" made first landfall southeast of the Taiwan Strait with a wind speed of approximately 30 m/s near the center of the typhoon eye and a second landfall in Dongshang County in Fujian Province. The moving process is classified into 3 regions for analysis and comparison. Detailed analyses of wind characteristics including wind profile, turbulence intensity, gust factor, turbulence integral scale and wind power spectral density function at the full process of the typhoon are conducted, and the findings are presented in this paper. Wind speed shows significant dependence on both the direction of the moving path and the distance between the typhoon center and measurement site. Wind characteristics significantly vary with the moving path of the typhoon center. The relationship between turbulence intensity and gust factor at different regions is investigated. The integral turbulence scales and wind speed are fitted by a Gaussian model. Such analysis and conclusions may provide guidance for future bridge wind-resistant design in engineering applications.

Structural Optimization of a Joined-Wing Using Equivalent Static Loads (등가정하중을 이용한 접합날개의 구조최적설계)

  • Lee Hyun-Ah;Kim Yong-Il;Park Gyung-Jin;Kang Byung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.585-594
    • /
    • 2006
  • The joined-wing is a new concept of the airplane wing. The fore-wing and the aft-wing are joined together in a joined-wing. The range and loiter are longer than those of a conventional wing. The joined-wing can lead to increased aerodynamic performance and reduction of the structural weight. In this research, dynamic response optimization of a joined-wing is carried out by using equivalent static loads. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. The gust loads are considered as critical loading conditions and they dynamically act on the structure of the aircraft. It is difficult to identify the exact gust load profile. Therefore, the dynamic loads are assumed to be (1-cosine) function. Static response optimization is performed for the two cases. One uses the same design variable definition as dynamic response optimization. The other uses the thicknesses of all elements as design variables. The results are compared.

Variation of Wind Field over the Leeward Area According to the Local-scale Geographical Variation under Strong Wind Condition (강풍조건에서 국지규모 지형 변화에 따른 풍하측 바람장 변화)

  • Jung, Woo-Sik;Park, Jong-Kil;Lee, Hwa Woon;Kim, Eun-Byul
    • Atmosphere
    • /
    • v.16 no.3
    • /
    • pp.169-185
    • /
    • 2006
  • We have investigated the wind speed variations over the leeward region when the strong wind blows. In this study we employ Envi-met numerical model to simulate the effect of surface boundary conditions. This model is applied for three cases which are characterized by land use and terrain height. The base case having natural geographical condition shows the weakest wind speed around lee side of Chunsudae. The others which remove the vegetation and cut off the terrain above 20 m ASL represent the stronger wind speed than base case. The main factor of this result is the surface friction. The distinct variation of wind is found at offshore area between Chunsudae and the southern part of village, but the northern part where is apart from Chunsudae shows a small variation of wind pattern. The weakening of wind speed around residential area is a maximum of 4~10 m/s when the wind blows in the village as strong as 55 m/s. The gust wind speed is weakened about 7~17 m/s in this case if the coefficient of gust wind adapted as 1.75.

Characteristics of Zonda wind in South American Andes

  • Loredo-Souza, Acir M.;Wittwer, Adrian R.;Castro, Hugo G.;Vallis, Matthew B.
    • Wind and Structures
    • /
    • v.24 no.6
    • /
    • pp.657-677
    • /
    • 2017
  • This paper discusses some features and conditions that characterize the Zonda wind, focusing particularly on the implications for wind engineering applications. This kind of wind, typical of mountainous regions, is far from being adequately characterized for computational simulations and proper modeling in experimental facilities such as boundary layer wind tunnels. The objective of this article is to report the research works that are being developed on this kind of wind, describing the main obtained results, and also to establish some general guidelines for the proper analysis of the Zonda in the wind engineering context. A classification for the Zonda wind is indicated and different cases of structural and environmental effects are described. Available meteorological data is analyzed from the wind engineering point of view to obtain the Zonda wind gust factors, as well as basic wind speeds relevant for structural design. Some considerations and possible directions for the Zonda wind-tunnel and computational modeling are provided. Gust factor values larger than those used for open terrain were obtained, nevertheless, the basic wind speed values obtained are similar to values presented by the Argentinian Wind Code for three-second gust, principally at Mendoza airport.

A Study of Reduction of Underbody Train Gust by a Heighter (하이터를 이용한 하부 열차풍 감소에 대한 연구)

  • Ku Yo-Cheon;Kim Jong-Yong;Yun Su-Hwan;Rho Joo-Hyun;Lee Dong-Ho;Kwon Hyeok-Bin
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1241-1247
    • /
    • 2005
  • The ballast-flying, induced by strong underbody train gust, may damage train underbody, wheel and even cause the safety problems. For this reason, a heighter is being used to prevent the ballast-flying phenomenon through underbody now reduction. In this research, flow field around a heighter is numerically simulated. And the parametric study of various heighter shapes is performed to find out more effective heighter shape. Also the ballast-flying probabilities are calculated for various ballast types and train speeds.

  • PDF

Track Measurements of Strong Wind under High-speed Train to Investigate Ballast-flying Mechanism (자갈비산 메커니즘 연구를 위한 고속철도차량 하부유동 계측)

  • Kwon H.B.;Park C.S.;Nam S.W.;Ko T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.369-373
    • /
    • 2005
  • To investigate the mechanism of ballast-flying phenomena by strong wind induced by high-speed trains, wind velocity in the vicinity of the track has been measured using 16-channel Kiel-probe array and detailed flow structure near the surface of the track has been analyzed. The position at which the underflow fully develop has been examined in order to assess the driving force of the turbulent flow under train and the results yields that the turbulent flow owing to the cavity of the inter-car as well as the friction force at the underbody of the train is the main reason of the strong wind under high-speed train. The preceding wind tunnel test results has been introduced to assess the probability of ballast-flying during the passage of the high-speed train by comparing the results from field-measuring. The results shows that when the G7 train as well as the KTX train runs at 300km/h, about 25m/s wind gust is induced just above the tie and the probability for small ballast under 50g to fly is about 50% when it is on the tie. If the G7 train runs at 350km/h, the wind gust just above the tie increases to 30m/s, therefore more radical countermeasure seems to be needed.

  • PDF

Fluid-structure Interaction Analysis of Large Sandwich Panel Structure for Randomly Distributed Wind Load considering Gust Effects (거스트 영향이 고려된 랜덤 분포 풍하중에 대한 대형 샌드위치 패널 구조물의 유체-구조 연성해석)

  • Park, Dae Woong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.12
    • /
    • pp.1035-1044
    • /
    • 2013
  • Because of the high specific stiffness and strength inherent in the sandwich structure composed of facesheet that resists in-plane loads and a core that resists out-of-plane loads, it is often used for large and light-weighted structures. However, inevitably the increased flexibility allows greater deformation-based disturbances in the structures. Thus, it is necessary to analyze the structural safety. To obtain more accurate analytical results, the input disturbances must more closely simulate real load conditions; to improve accuracy, non-linear elements such as gust effects were considered. In addition, the structural safety was analyzed for the iso-grid sandwich panel structure using fluid-structure interactions. For a more realistic simulation, flow velocity fields, which consider the effects of irregular gust fluctuation, were generated and the coupled field was analyzed by mapping the pressure and displacement.