• Title/Summary/Keyword: Gusset weld

Search Result 12, Processing Time 0.015 seconds

Experimental Study for Structural Behavior of Embed Plate into Concrete Subjected to Welding Heat Input (매입강판 용접열에 의한 고강도 콘크리트 접합부 구조성능 영향평가에 관한 실험적 연구)

  • Chung, Kyung Soo;Kim, Ki Myon;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.569-578
    • /
    • 2013
  • In a super-tall building construction, thick and large-sized embed plates are usually used to connect mega structural steel members to RC core wall or columns by welding a gusset plate on the face of the embed plate with T-shape. A large amount of heat input accumulated by weld passes causes the plates to expand or deform. In addition, the temperature of concrete around the plates also could be increased. Consequently, cracks and spalls occur on the concrete surface. In this study, the effect of weld heat on embed plates and 80MPa high strength concrete is investigated by considering weld position (2G and 3G position), edge distance, concrete curing time, etc. Measured temperature of the embed plates was compared with the transient thermal analysis results. Finally, push-out tests were performed to verify and compare the shear studs capacity of the embed plate with design requirement. Test result shows that the shear capacity of the plate is reduced by 14%-19% due to the weld heat effect and increased as the concrete curing time is longer.

Fatigue Life Estimation of Welding Details by Using a Notch Strain Approach (노치변형률법을 적용한 용접구조상세의 피로수명평가)

  • Han, Jeong-Woo;Han, Seung-Ho;Shin, Byung-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.977-985
    • /
    • 2004
  • An evaluation of fatigue life of welded components is complicated due to various geometrically complex welding details and stress raisers in vicinity of weld beads, ego under cuts, overlaps and blow holes. These factors have a considerable influence on the fatigue strength of welded joints, as well as the welding residual stress which is relaxed depending on the distribution of local stress at the front of the stress raisers. To reasonably evaluate fatigue life, the effect of geometries and welding residual stress should be taken into account. The several methods based on the notch strain approach have been proposed in order to accomplish this. These methods, however, result in differences between analytical and experimental results due to discrepancies in estimated amount of relaxed welding residual stress present. In this paper, an approach that involves the use of a modified notch strain approach considering geometrical effects and a residual stress relaxation model based on experimental results was proposed. The fatigue life for five types of representative welding details, ego cruciform, cover plate, longitudinal stiffener, gusset and side attachment joint, are evaluated using this method.