• Title/Summary/Keyword: Gunfire Resistance Test

Search Result 3, Processing Time 0.017 seconds

Assessment of Self-sealing Performance of the Fuel Tank of the Rotorcraft against Gunfire Projectiles (회전익 항공기용 연료탱크 내탄성능 시험평가)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Lee, Jong-Won;Hwang, In-Hee;Hue, Jang-Wook;Shin, Dong-Woo;Jung, Tae-Kyung;Ha, Byoung-Geun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.477-481
    • /
    • 2010
  • Some rotorcraft fuel tanks are required to be self-sealing and crashworthy for enhancing the survivability of crews. Self-sealing capability prevents the fuel leakage through contacting fuel with self-sealing material when the tank wall is penetrated by projectiles such as bullets. US army established MIL-DTL-27422D which specifies the detail requirements related to gunfire resistant fuel tank especially for military rotorcraft. The Fuel tanks for Korea Helicopter Program have been developed in accordance with MIL-DTL-27422D. The Self-sealing capability of the fuel tanks has been confirmed by the gunfire resistance test which specified on the MIL-DTL-27422D.

Numerical Simulation of Bullet Impact for Fuel Cell of Rotorcraft (회전익항공기용 연료셀 피탄 수치모사 연구)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.405-411
    • /
    • 2012
  • Inside a rotorcraft fuel cell, pipes and components are located for fuel storage and fuel supply into the engine. Utility helicopters, operated in battle fields, fly at lower altitude compared to fixed-wing aircraft and hence are more likely to be exposed to gunfire. Since internal pressure of fluid increases when hit, the effect on LRU due to increase in pressure must taken into account when designing the aircraft for survivability. However, it is costly and time consuming to manufacture a fuel cell for gunfire test, and due to constraints from usage of live ammunition, related data gathered through numerical simulation is needed. In this study, numerical simulation on rotorcraft fuel cell exposed to gunfire was carried out using Autodyn to analyze bullet movement inside the fuel cell after hit, and internal pressure of fluid and equivalent stress on fuel cell assessed.

Study on the Phase II Qualification Test for Fuel Cell of Rotorcraft (회전익항공기용 연료셀 Phase II 인증시험에 대한 고찰)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1054-1060
    • /
    • 2013
  • Fuel tank of a rotorcraft has a great influence on the survivability of crews. For a long time, US army has tried to develop the proper material for fuel cell of a military rotorcraft. As a result, the design specification of fuel cell, MIL-T-27422A, was issued for the first time on 1961. Through a few revisions, it has been developed to ML-DTL-27422D in 2007. It should be assured that fuel cell satisfies the requirement defined in MIL-DTL-27422D. The qualification test of this specification is classified into Phase I test for material and Phase II for fuel cell itself. This paper studies test conditions and procedures of slosh & vibration, gunfire resistance and crash impact test. They are considered as the most important tests which have a high possibility of failure. The rational consideration of this paper can improve the ability for estimating not only the validity of test procedure and test condition but test result. Based on the rational consideration, it is expected that the ability of the systematic development can be improved.