• Title/Summary/Keyword: Gun Muzzle Noise

Search Result 12, Processing Time 0.026 seconds

A Study on the Stabilization of Gun Barrel by Viscoelastic Damping Material (점탄성 감쇠재료를 이용한 포신 잔류진동의 조기 안정화 방안연구)

  • 임재희;백판구;이재영;정백기
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.714-719
    • /
    • 1999
  • Because the residual vibration of a gun barrel acts negatively on the firing of a large calibers gun, the fast stabilization of theresidual vibration is indispensible to the precise and successive firing. In this study, the residual vibrations of a gun barrel carrying a bore evacuator and a muzzle brake are investigated by the experimental method. The influence of the eigenfrequencies and the mode shapes of gun barrel on the fast stabilization of the residual vibration is studied for the various masses of bore evacuator and muzzle brake, the possition of bore evacutor. Also the relationships between the funcamental frequencies and the settling times of the gun barrel are investigated for the various parameters. The experiments to reduce the residual vibration using the viscoelastic damping treatment gives the best result among the various treatments for the reduction of residual vibration of the system.

  • PDF

A Numerical Analysis of the Baffled Silencer for the Noise Diminution of Tank Gun (전차포 소음 저감을 위한 배플형 소음기의 수치해석)

  • Ko, Sung-Ho;Lee, Dong-Su;Kang, Kuk-Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.217-224
    • /
    • 2007
  • A numerical analysis for a silencer with three baffles of 120mm tank gun has been performed. The Reynolds-Averaged Wavier-Stokes equations with Baldwin-Lomax turbulence model were employed to compute unsteady, compressible flow inside the tank gun and the silencer. An axisymmetric computational domain was constructed by using 12 multi block chimera grids. The resolution of flow field is observed by depicting calculated pressure and muzzle brake force. The peak blast pressure and noise through the silencer reduced approximately 99% and 41dB in comparison to the tank gun without the silencer at near filed.

An Experimental Study on the Development of Silencer for the Medium Caliber Gun (중구경 화포용 소음기 개발을 위한 실험적 연구)

  • Lee, HaeSuk;Park, SungHo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.725-732
    • /
    • 2014
  • The silencer for the medium caliber gun was studied to reduce the propagation of gun-generated noise from the firing test range to the community. Three types of silencer were made to compare the reduction of sound pressure level and the effect of chamber volume and the exit angle to the reduction of sound pressure was considered. The structural analysis and measurement of pressure in the silencer showed that the structure is safe in terms of strength. The increase of recoil force to buffer must be considered in the development of silencer. The hypothesis test on the muzzle velocity for the existence of silencer showed that there are no difference at the significance level of 0.05.

An Experimental Study on the Vibration Absorber for Vibration Attenuation of Cantilever Beam Structure (외팔보 구조물의 진동감쇠를 위한 동흡진기의 실험적 연구)

  • Kwag, Dong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk;Kim, Hun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.991-996
    • /
    • 2011
  • This study was carried out vibration attenuation of vibration absorber attached to the cantilever beam structure. Modern tank guns are stabilized to allow fire on the move while traversing uneven terrain. However, as the length of the barrel is extended, to meet required muzzle exit velocities, the terrain induced vibrations lead to increased muzzle pointing errors. Thus, reducing these vibrations should lead to increased accuracy. The vibration absorber includes a compliant energy storage device, such as a spring, and a mass secured to the energy storage device. In this study, it accomplished a research in about gun barrel vibration attenuation using tuned mass damper. The barrel was hung from a bungee cord for free-free condition. It accomplished a vibration experiment for verified attenuation efficiency.

Numerical Study of Sound Generation Mechanism by a Blast Wave (폭발파에 의한 음향파 생성 메커니즘의 수치적 연구)

  • Bin, Jong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1053-1061
    • /
    • 2009
  • The goal of this paper is to investigate the generation characteristics of the main impulsive noise sources generated by the supersonic flow discharging from a muzzle. For this, this paper investigates two fundamental mechanisms to sound generation in shocked flows: shock motion and shock deformation. Shock motion is modeled numerically by examining the interaction of a sound wave with a shock. The numerical approach is validated by comparison with results obtained by linear theory for a small disturbance case. Shock deformations are modeled numerically by examining the interaction of a vortex ring with a blast wave. A numerical approach of a dispersion-relation-preserving(DRP) scheme is used to investigate the sound generation and propagation by their interactions in near-field.

An Evaluation of Silencer Characteristics by Live Firing Test (실사격에 의한 소음기 특성 평가)

  • Kang, Kuk-Jeong;Ko, Sung-Ho;Kwak, Young-Kyun;Lee, Duck-Joo;Lee, In-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.217-224
    • /
    • 2007
  • The present work addresses an experimental study on sound attenuation characteristics of silencer by live firing test. When a gun fires, there exists excessive noise which propagates as a form of blast wave. As muzzle energy of the weapon systems increases, the level of impulsive noise also increases. It is well known that the impulsive noise from a gun gives a serious damage to human bodies and structures. The adverse effects of impulsive sound also cause both social and military problems. So it is very important to study the characteristics of the impulsive sound attenuation. The live firing test is performed to evaluate the effect of four different silencers. The test result is compared with the case of bare muzzle which is not installed the silencer. The frequency characteristics are also analyzed to investigate the diminution of sound pressure level. The results of this study will be helpful to the designing silencer for large caliber weapon systems.

An Experimental study on the Vibration absorber for vibration attenuation of cantilever beam structure (외팔보 구조물의 진동감쇠를 위한 동흡진기의 실험적 연구)

  • Kwag, Dong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk;Kim, Hun-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.627-632
    • /
    • 2011
  • This study was carried out vibration attenuation of vibration absorber attached to the cantilever beam structure. Modern tank guns are stabilized to allow fire on the move while traversing uneven terrain. However, as the length of the barrel is extended, to meet required muzzle exit velocities, the terrain induced vibrations lead to increased muzzle pointing errors. Thus, reducing these vibrations should lead to increased accuracy. The vibration absorber includes a compliant energy storage device, such as a spring, and a mass secured to the energy storage device. In this study, it accomplished a research in about gun barrel vibration attenuation using tuned mass damper. The barrel was hung from a bungee cord for free - free condition. It accomplished a vibration experiment for verified attenuation efficiency.

  • PDF

A Study on the Vibration Damping of a Barrel Using Vibration Absorber (동흡진기를 이용한 포신의 진동감쇠에 대한 연구)

  • Kwag, Dong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk;Kim, Hun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.408-415
    • /
    • 2011
  • Advanced tanks in the future combat system are expected to have the trends of large caliber, high explosive shell and light weight for destructive power and improvement in mobility. Their guns are required to have longer barrels to meet increased muzzle exit velocities. However, as the length of the barrel is extended, the vibrations induced by the breech forces in fire and the terrain lead to increased muzzle pointing errors. Therefore, the fire-induced and terrain-induced vibrations must be attenuated. A method to reduce these vibrations without the significant increase of the gun mass is to use the forward thermal shroud as part of a tuned mass damper. In this study, the dynamically-tuned-shroud using this shroud and leaf springs is introduced and its effectiveness on the vibration attenuations of the barrel are verified. The parametric studies on the stiffness of these leaf springs are performed and the analytical results are verified using the experimental model of the dynamically-tuned-shroud.

An Experimental Study on Installation of the Shielding Material to Reduce the Shock Noise of a Gun (화포소음 저감을 위한 차폐재 설치에 관한 실험적 연구)

  • Lee, Haesuk;Hong, Junhee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.453-461
    • /
    • 2016
  • The paper represents the experimental analysis of the shock noise of medium caliber guns when a projectile is passed through the shielding material. In the study, the shielding material was constructed and tested in three separate experiments. The shielding material was not installed for medium caliber gun in Case 1. A medium caliber gun was fully covered with shielding material in Case 2, and another one was put with shielding material near muzzle in Case 3. In each experiment, the experimental data was compared with each other. Results showed the firing shielding material achieved a significant noise reduction in $90^{\circ}$ to the noise source. Case 3 is confirmed to be better effective than Case 2 in the near field. But, the noise reduction in the far field is small in quantity due to the low frequency. The paper is considered that further study is necessary for the shielding material which can absorb a low frequency noise in the future.

A Muffler with Ventilation Holes for a 40 mm Medium Caliber Gun (40 mm 중구경 화포용 천공형 소음기 설계)

  • Lee, Hae-Suk;Hong, Jun-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.479-485
    • /
    • 2016
  • A 40 mm medium caliber gun to be equipped with ventilation holes is designed and manufactured in this study. The muffler used is composed of holes, blades, and several spaces in the tube. Accordingly, a numerical analysis is performed with computational fluid dynamics (CFD) before testing the muffler. The validity of the numerical analysis is examined by analyzing the differences between the measured data of the firing test and the results of the CFD analysis. The CFD analysis showed that the numerical analysis can be used positively in the muffler design because no difference exists between the results of the field test and the CFD analysis. The test result also indicated a noise reduction of approximately 10 dB. Moreover, the muzzle velocity is almost equivalent, regardless of the muffler.