• Title/Summary/Keyword: Gum xanthan

Search Result 192, Processing Time 0.025 seconds

Dried Noodle Making of Composite Flours Utilizing Buckwheat and Wheat Flour (메밀가루와 밀가루 복합분의 건면 제조시험)

  • Kim, Yong-Soon;Kim, Hyong-Soo
    • Journal of Nutrition and Health
    • /
    • v.16 no.3
    • /
    • pp.146-153
    • /
    • 1983
  • In this study, buckwheat four was classified by the order of extraction from the inmost layer to the outmost layer, and was designated as $B_1,\;B_2,\;B_3,$ and the mixed flour of $B_1,\;B_2,\;B_3$ (1:1:1) was named $B_0$. To improve the dried noodle-making properties, various levels of strong wheat flour and additives such as sodium alginate (SA) and xanthan gum(XG) were added to buckwheat. 1) The buckwheat $B_2$ and $B_3$ flours contained much higher amounts of crude ash, protein and fat than the $B_1$ flour. 2) Buckwheat $B_3$ flour demonstrated lower maxium viscosity value by amylograph than the $B_1$ flour, but it demonstrated 2 times higher maximum viscosity value than wheat flour. Buckwheat $B_1$ flour demonstrated 4-5 times higher maximum viscosity value than wheat flour. Addition of SA and XG increased the viscosity of the flour mixtures. 3) It was possible to make dried noodles from the composite flour of (buckwheat 40 %+wheat 60 %). The lesser the quantity of buckwheat flour was, the better the kneading property of mixed flour was. 4) SA and XG, which were added at the level of 1.0-1.5%, significantly improved dough making properties and the cooking quality of the noodles.

  • PDF

Isolation and Characterization of a Novel Polysaccharide Producing Bacillus polymyxa A49 KCTC 4648P

  • Ahn, Sung-Gu;Suh, Hyun-Hyo;Lee, Chang-Ho;Moon, Seong-Hoon;Kim, Hee-Sik;Ahn, Keug-Hyun;Kwon, Gi-Seok;Oh, Hee-Mock;Yoon, Byung-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.171-177
    • /
    • 1998
  • The strain A49, which produces a new type of extracellular polysaccharide was isolated from soil samples. From morphological, physiological and biochemical tests, the strain A49 was identified as a Bacillus polymyxa and named Bacillus polymyxa A49. Bacillus polymyxa A49 was found to produce a highly viscous extracellular polysaccharide when grown aerobically in a medium containing glucose as the sole source of carbon. The polysaccharide (A49 POL) showed a homogeneous pattern on gel permeation chromatography (GPC) and its molecular weight was estimated to be about 1.6 mega dalton (mDa). The FT-IR spectrum of A49-POL revealed typical characteristics of polysaccharides. As a result of investigations with HPLC and carbozole assay, A49-POL was found to consist of L-fucose, D-galactose, D-glucose, D-mannose, and D-glucuronic acid, with the molar ratio of these sugars being approximately 1:2:7:50:12. Rheological analysis of A49 POL revealed that it is pseudoplastic and has a higher apparent viscosity at dilute concentrations than does xanthan gum. The consistancy factor of A49 POL was found to be higher, and the flow index of A49 POL lower, than xanthan gum. Its apparent viscosity was comparatively unstable at various temperatures. the A49 POL showed the highest apparent viscosity at pH 3. When salts were added to A49 POL solution, the solution was compatible with up to 10% KCl, 35% NaCl, 55% $CaCl_2$, 55% $MgCl_2$, 55% $K_2HPO_4$, and 110% $Ca({NO_3})_2$, respectively.

  • PDF

Effects of the β-Glucan- and Xanthan gum-based Biopolymer on the Performance of Plants Inhabiting in the Riverbank (바이오폴리머 신소재가 하천 자생 식물 발아 및 생장에 주는 영향)

  • An, Joo Hee;Jeong, Hyungsoon;Kim, Eunsuk
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.180-188
    • /
    • 2018
  • Biopolymer based on microbial ${\beta}$-glucan and xanthan gum is a rising geotechnical material that can enhance the cohesion between soil particles and consequently reduce soil erosion. Recently, biopolymer is proposed to utilize for the riverbank strengthening. As an effort of the ecological assessment of biopolymer application in civil engineering, this study examined the effects of biopolymer on seed germination and growth of nine plant species inhabiting in the Korean riverside. Responses of above-ground growth to the biopolymer differed among plant species. One species grew less but others maintained their growth when plants were grown in the soil with biopolymer. In contrast, root grew more vigorously and root/shoot ratio decreased in the biopolymer across testing plant species. These results indicate that biopolymer application on the river bank likely stimulate root growth of native plant species, which, in turn, possibly reinforces riverbank. Species specific responses of above-ground growth implies that ecological effects of biopolymer application would depend on the species composition of the ecosystem.

The Analysis of Effect of Biopolymer Treated Soils in Seed Spray Method in the River Embankment (제방 녹화공법에서 바이오폴리머 처리토의 효능 분석)

  • Seo, Seunghwan;Jin, Seungnam;Chang, Ilhan;Chung, Moonkyung
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.304-313
    • /
    • 2019
  • Biopolymer based on microbial β-glucan and xanthan gum is effective for vegetation and has a function of enhancing soil strength, which can be used as soil reinforcement and stabilization materials in river embankment. The purpose of this study is to verify the vegetation effect of the surface of levee by biopolymer with seed spraying method. Mixed soils with biopolymer were used to cover the surface of embankments. The strength is higher in biopolymer-treated soil and xanthan gum based biopolymer has advantage for quality control in field scale. In addition, the vegetation of F. arundinacea and L. perenne showed various reactions with types of biopolymers. Biopolymer has a positive effect on the vegetation of them. In contrast, root growth tended to decrease in biopolymer-treated soils. The results indicate that root growth is slow down due to increasing ability to retain water in biopolymer-treated soil. In order to apply biopolymer to river embankment, it is necessary to examine the effects of biopolymers on a wide range of plant species in river embankment.

Extracellular Polysaccharide Produced by a New Methylotrophic Isolate (새로운 메탄올 자화세균이 생산하는 세포외 다당류)

  • Lee, Ho J.;Kim, Si W.;Kim, Young M.
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.212-218
    • /
    • 1998
  • An obligately methylotrophic bacterium which produces extracellular polysaccharide (EPS) was isolated through methanol-enrichment culture technique. The isolate was aerobic, nonmotile, and gram negative rod and exibited catalase, but no oxidase, activity. Plasmid, carotenoid, and poly-${\beta}$-hydroxybutyric acid were not found. The guanine plus cytosine content of DNA was 52-56%. The isolate was found to grow only on methanol and monomethylamine. Growth was optimal ($t_d=2.4h$) at $35^{\circ}C$ and pH 6.5 in a mineral medium containing 0.5% (v/v) methanol, 25 mM phosphate, and 0.212% ammonium sulfate. Methanol was assimilated through the ribulose monophosphate pathway. Maximun amount of EPS was produced in cells growing at the mid-stationary growth phase at $30^{\circ}C$ in a mineral medium (PH 6.5) containing 1.0% (v/v) methanol in the CIN ratio of 54.7. Thin-layer chromatographic and high performance liquid chromatographic analysis revealed that the EPS was composed of glucose and galactose. EPS which was not treated with ethanol (Pbe) exhibited stable viscosity under various concentrations of salts and temperatures hut showed high viscosity at low pH. EPS precipitated with ethanol (Pae) was found to be more stable in viscosity than the Pbe at various salt concentrations, temperatures, and pH. The Pae also exhibited higher viscosity than the Pbe and xanthan gum. Scanning electron microscopy revealed that the lyophilized Pbe and Pae have a multi-layered structure and a structure of thick fibers, respectively.

  • PDF

β-Glucan- and Xanthan gum-based Biopolymer Stimulated the Growth of Dominant Plant Species in the Korean Riverbanks (베타글루칸과 잔탄검 계열 바이오폴리머 신소재의 국내 하천 식물종에 대한 생육 촉진 영향)

  • Jeong, Hyungsoon;Jang, Ha-Young;Ahn, Sung-Ju;Kim, Eunsuk
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.3
    • /
    • pp.163-170
    • /
    • 2019
  • The civil engineering materials used to stabilize the slopes of new riverbanks have a great impact on the types and growth of vegetation introduced after the completion of construction procedure. Recently, microbial-derived, ${\beta}$-glucan- and xanthan gum-based biopolymers are attracting attention as an ecofriendly strengthening material of riverbanks that can possibly stimulate plant growth. This study aimed to assess ecological effects of biopolymer application on native plants in Korean riverbanks. In particular, since dominant plant species could shape characteristics of an ecosystem, we examined the effects of biopolymer on the dominant plant species in riverbanks. Overall, biopolymer did not affect seed germination rates of testing plant species. In contrast, plants grew more vigorously in the soil mixed with biopolymer compared to those in the control soil. The biomass of Echinochloa crus-galli especially increased around two times more in the biopolymer treatment. Plants produced heavier root biomass and leaves with larger specific leaf area, which possibly contributes to the tolerance of environmental stress like drought. These results suggest that biopolymers treated on river banks are expected to stimulate plant growth and increase stress tolerance of domestic dominant plant species.

Investigation on the Key Parameters for the Strengthening Behavior of Biopolymer-based Soil Treatment (BPST) Technology (바이오폴리머-흙 처리(BPST) 기술의 강도 발현 거동에 대한 주요 영향인자 분석에 관한 연구)

  • Lee, Hae-Jin;Cho, Gye-Chum;Chang, Ilhan
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.109-119
    • /
    • 2021
  • Global warming caused by greenhouse gas emissions has rapidly increased abnormal climate events and geotechnical engineering hazards in terms of their size and frequency accordingly. Biopolymer-based soil treatment (BPST) in geotechnical engineering has been implemented in recent years as an alternative to reducing carbon footprint. Furthermore, thermo-gelating biopolymers, including agar gum, gellan gum, and xanthan gum, are known to strengthen soils noticeably. However, an explicitly detailed evaluation of the correlation between the factors, that have a significant influence on the strengthening behavior of BPST, has not been explored yet. In this study, machine learning regression analysis was performed using the UCS (unconfined compressive strength) data for BPST tested in the laboratory to evaluate the factors influencing the strengthening behavior of gellan gum-treated soil mixtures. General linear regression, Ridge, and Lasso were used as linear regression methods; the key factors influencing the behavior of BPST were determined by RMSE (root mean squared error) and regression coefficient values. The results of the analysis showed that the concentration of biopolymer and the content of clay have the most significant influence on the strength of BPST.

Selection and Technical Development for Seed Pelleting Material of Codonopsis lanceolata Trautv (더덕 종자의 펠렛팅을 위한 소재 탐색 및 기술개발)

  • Choi, Kyeong-Gu;Lee, Youn-Su;Cha, Kwang-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.3
    • /
    • pp.130-133
    • /
    • 2006
  • This study was conducted to select Codonopsis lanceolata seed's new pelleting particulate materials and adhesives. Different adhesives (Polyvinyl alcohol (PVA), Carboxymethyl cellulose (CMC), Polyvinyl pyrrolidone (PVP), Xanthan gum (XG), Arabic gum (AG)) and particulate materials (Illite, Diatomite, Pyrophyllite + Illite + Diatomite (PID), Pyrophyllite + Illite + Talc (PIT), Bentonite + Talc (BT)) were tested for seed pelleting. PID for Codonopsis lanceolata seed pelleting appeared to be the best particulate material. Among the pelleting adhesives, PVP was the best adhesive for seed pelleting, and the optimum concentration for germination of pelleting seed was 1 %. Germination rate of the pelleted seeds treated with PID particulate material and PVP adhesive was higher (86.8%) than those of raw seeds (85.5%). $T_{50}$ and MDG of pelleted Codonopsis lanceolata seed required five and eight days at soil moisture content of 50%, respectively.

Effects of Heat, Salt and Hydrocolloid Treatments on Flying Fish Cypselurus agoo Roe Analogs Prepared Using Calcium Alginate Hydrogels

  • Jo, Eun-Hee;Ha, Bom-Bi;Kim, Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.203-207
    • /
    • 2014
  • The present study was conducted to elucidate effects of heat, salt and hydrocolloid treatments on flying fish Cypselurus agoo roe analogs prepared using calcium alginate gel. The changes in size, sphericity and rupture strength of the analogs as affected by treatments of heat, sodium chloride and hydrocolloids were investigated. The size (mm), sphericity (%), and rupture strength (kPa) of the analogs were $2.2{\pm}0.1$, $98.2{\pm}0.2$, and $74.7{\pm}1.7$, respectively. When the analogs were heated at $95^{\circ}C$ in water, the size was slightly decreased. The rupture strength by curing with 2% sodium chloride was slightly increased. Sphericity didn't show significant differences by sodium chloride and heat treatment. The rupture strength of the analogs was slightly decreased by heat treatment, whereas remarkably decreased by curing with sodium chloride. In order to prevent a remarkable decrease in rupture strength of the analogs by curing with sodium chloride, the analogs were treated with hydrocolloids such as xanthan gum, gum guar, glucomannan, pectin and gelatin. The hydrocolloids treated analogs showed an increment in size and no significant changes in sphericity. On the other hand, the rupture strength of the hydrocolloids treated analogs exhibited remarkable increase than that of untreated ones.

Physicochemical and Rheological Properties of a Novel Emulsifier, EPS-R, Produced by the Marine Bacterium Hahella chejuensis

  • Yim Joung Han;Kim Sung Jin;Aan Se Hoon;Lee Hong Kum
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.405-413
    • /
    • 2004
  • The rheological properties of an exopolysaccharide, EPS-R, produced by the marine bacterium Hahella chejuensis strain 96CJ 10356 were investigated. The $E_{24}$ of $0.5\%$ EPS-R was $89.2\%$, which was higher than that observed in commercial polysaccharides such as xanthan gum ($67.8\%$), gellan gum ($2.01\%$) or sodium alginate ($1.02\%$). Glucose and galactose are the main Sugars in EPS-R, with a molar ratio of ${\~}1:6.8$, xylose and ribose are minor sugar components. The average molecular mass, as determined by gel filtration chromatography, was $2.2{\times}10^3$ KDa, The intrinsic viscosities of EPS-R were calculated to be 16.5 and 15.9 dL/g using the Huggins and Kraemer equations, respectively, with a 2.3 dL/g overlap. In terms of rigidity, the conformation of EPS-R was similar to that of caboxymethyl cellulose ($5.0{\times}10^{-2}$). The rheological behavior of EPS-R dispersion indicated that the formation of a structure intermediate between that of a random-coil polysaccharide and a weak gel. The aqueous dispersion of EPS-R at concentrations ranging from 0.25 to $1.0\%$ (w/w) showed a marked shear-thinning property in accordance with Power-law behavior. In aqueous dispersions of $1.0\%$ EPS-R, the consistency index (K) and flow behavior index (n) were 1,410 and 0.73, respectively. EPS-R was Stable to pH and salts.