• Title/Summary/Keyword: Guideline navigation

Search Result 122, Processing Time 0.024 seconds

A Study on the Minimum Safety Distance between Navigation Vessels based on Vessel Operator's Safety Consciousness (선박운항자 안전 의식에 기초한 선박통항 최소 이격거리에 관한 연구)

  • Park, Young-Soo;Jeong, Jae-Yong;Kim, Jong-Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.401-406
    • /
    • 2010
  • Vessel Operator has been navigating with subjective sate distance in accordance with night & daytime, fore & aft, port & stbd abeam and visibility situation. This sate distances may different depending on inside & outside harbor limit, current, wind and visibility situation. By now, the concept of proper sate distance between navigating vessels has been adopted in Korea, using the early 1980's foreign data. And the safe distance is being used with the same value without any consideration of inside & outside harbor and the kind of vessel. So it is necessary to evaluate or search proper distance concept based on different sate consciousness of Korean manners. This paper aims to develop the basic model for marine traffic evaluation and the new model of marine traffic congestion. Also this paper proposes the basic control guideline of vessel traffic service center. The result of this study showed that minimum sate distance should be 4.4L forward, 3.1L aft and 26L abeam in case of good visibility in daytime, considering various parameters such as visibility, day and night. Some differences Here found between the existing minimum sate distance and the new minimum sate distance derived from the result of this study.

Improvement of Accuracy on Dynamic Position Determination Using Combined DGPS/IMU (DGPS/IMU 결합에 의한 동적위치결정의 정확도 향상)

  • Back, Ki-Suk;Park, Un-Yong;Hong, Soon-Heon
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.361-369
    • /
    • 2006
  • This study conducted an initialization test to decide dynamic position using AHRS IMU sensor, and derived attitude correction angles of vehicles against time through regression analysis. It was also found that the heading angle was stabilized with variation less than 1°after 60 seconds. Using these angles, this study carried out an experiment on the determination of dynamic position for each system in the open sky and in a semi-open sky. According to the results, in the open sky, DGPS alone systems were excellent in accuracy but poor in data acquisition, so the moving distance was around 12m. In DGPS/IMU combined system, accuracy and data acquisition were satisfactory and the moving distance was around 0.3m. In a semi-open sky, DGPS alone systems were excellent in accuracy in order of DGPS < FIMU < DGPS/IMU according to average and standard errors obtained with exclusion of places where data were not be obtained. The moving distance was the same as that in the open sky. For DGPS, when places where data were not obtainable were divided into Several block and they were compared, the maximum deviation from the trajectory was up to 41.5m in DGPS alone system, but it was less than 2.2m and average and standard errors were significantly improved in the combined system. When the navigation system was applied to surveys and the result was compared with position error 0.2mm under the guideline for digital map, it was possible to work on maps on a scale of up to 1 : 1,000.

  • PDF