• Title/Summary/Keyword: Guided Ultrasonic

검색결과 162건 처리시간 0.027초

The Use of Guided Waves for Rapid Screening of Chemical Plant Pipework

  • Alleyne, D.N.;Pavlakovic, B.;Lowe, M.J.S.;Cawley, P.
    • 비파괴검사학회지
    • /
    • 제22권6호
    • /
    • pp.589-598
    • /
    • 2002
  • The safe operation of petrochemical plant requires screening of the pipework to ensure that there are no unacceptable levels of corrosion. Unfortunately, each plant has many thousands of metres of pipe, much of which is insulated or inaccessible. Conventional methods such as visual inspection and ultrasonic thickness gauging require access to each point of the pipe which is time consuming and very expensive to achieve. Extensional or torsional ultrasonic guided waves in the pipe wall provide an attractive solution to this problem because they can be excited at one location on the pipe and will propagate many metres along the pipe, returning echoes indicating the presence of corrosion or other pipe features. Guided Ultrasonics Ltd have now commercialised the technique and this paper describes the basis of the method, together with examples of practical test results and typical application areas.

Dependencies of Ultrasonic Velocities on the Wall Thickness in Polyvinyl Chloride Cortical Bone Mimics

  • Lee, Kang-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • 제29권3E호
    • /
    • pp.140-145
    • /
    • 2010
  • In the present study, tubular polyvinyl chloride (PVC) cortical bone mimics that simulate the cortical shell of long bones were used to validate the axial transmission technique for assessing the cortical thickness by measuring the ultrasonic velocities along the cortical shell of long bones. The ultrasonic velocities in the 9 PVC cortical bone mimics with wall thicknesses from 4.0 to 16.1 mm and inner diameters from 40 to 300 mm were measured as a function of the thickness by using a pair of custom-made transducers with a diameter of 12.7 mm and a center frequency of 200 kHz. In order to clarify the measured behavior, they were also compared with the predictions from a theory of guided waves in thin plates. This phantom study using the PVC cortical bone mimics provides useful insight into the dependencies of ultrasonic velocities on the cortical thickness in human long bones.

Development of a Guided Wave Technique for the Inspection of a Feeder Pipe in a Pressurized Heavy Water Reactor

  • Cheong, Yong-Moo;Lee, Dong-Hoon;Kim, Sang-Soo;Jung, Hyun-Kyu
    • Corrosion Science and Technology
    • /
    • 제4권3호
    • /
    • pp.108-113
    • /
    • 2005
  • One of the recent safety issues in the pressurized heavy water reactor (PHWR) is the cracking of the feeder pipe. Because of the limited accessibility to the cracked region and a high dose of radiation exposure, it is difficult to inspect all the pipes with the conventional ultrasonic method. In order to solve this problem, a long-range guided wave technique has been developed. A computer program to calculate the dispersion curves in the pipe was developed and the dispersion curves for the feeder pipes in PHWR plants were determined. Several longitudinal and/or flexural modes were selected from the review of the dispersion curves and an actual experiment has been carried out with the specific alignment of the piezoelectric ultrasonic transducers. They were confirmed as L(0,1)) and/or flexural modes(F(m,2)) by the short time Fourier transformation(STFT) and were sensitive to the circumferential cracks, but not to the axial cracks in the pipe. An electromagnetic acoustic transducers(EMAT) was designed and fabricated for the generation and reception of the torsional guided wave. The axial cracks were detected by a torsional mode(T(0,1)) generated by the EMAT.

유도초음파를 이용한 복수기 튜브지지판 영역에서의 결함검출기법 (A Technique for Defect Detection of Condenser Tube in Support Plate Region using Guided Wave)

  • 김용권;박익근;박세준;안연식;길두송
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.36-41
    • /
    • 2012
  • General condensers consist of many tubes supported by tube sheets and support plates to prevent the deflection of the condenser tubes. When a fluid at high pressure and temperature runs over the tubes for the purpose of transferring heat from one medium to another, the tubes vibrate and their surface comes into contact with the support plates. This vibration causes damage to the tubes, such as cracks and wear. We propose an ultrasonic guided wave technique to detect the above problems in the support plate region. In the proposed method, the ultrasonic guided wave mode, L(0,1), is excited using an internal transducer probe from a single position at the end of the tube. In this paper, we present a preliminary experimental verification using a super stainless tube and show that the defects can be discriminated from the support signals in the support region.

Multi-resolution bolt preload monitoring based on the acoustoelastic effect of ultrasonic guided waves

  • Fu, Ruili;Mao, Ruiwei;Yuan, Bo;Chen, Dongdong;Huo, Linsheng
    • Smart Structures and Systems
    • /
    • 제30권5호
    • /
    • pp.513-520
    • /
    • 2022
  • During the long-time service of a bolt, its preload may suffer slight perturbations or significant reductions. It is a dilemma to monitor preload changes at high resolution and full scale. Approaches for bolt preload monitoring with multi-resolution should be developed. In this paper, a simple and effective multi-resolution bolt preload monitoring approach using ultrasonic guided waves (UGW) is proposed. A linear relationship between the time-of-flight (TOF) variation of multi-reflected waves and preload is derived to theoretically reveal the multi-resolution properties of UGW. The variations of TOF before and after the slight preload perturbations are extracted by using a global evaluation method. Experimental results show that the signal-to-noise ratio (SNR) of the 1st, 2nd, and 3rd-reflected UGWs is larger than 20 dB. The resolution of the 2nd-reflected UGW is higher than that of the 1st-reflected UGW and lower than that of the 3rd-reflected UGW. The ultimate detectable resolutions of bolt preload (DRBP) of the 1st and 3th-reflected UGWs are 0.9% and 0.5%, respectively. By using the 1st and 3th-reflected guided waves, the bolt looseness with different degrees can be monitored simultaneously.

Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring

  • Rizzo, Piervincenzo;Lanza di Scalea, Francesco
    • Smart Structures and Systems
    • /
    • 제2권3호
    • /
    • pp.253-274
    • /
    • 2006
  • The structural monitoring of multi-wire strands is of importance to prestressed concrete structures and cable-stayed or suspension bridges. This paper addresses the monitoring of strands by ultrasonic guided waves with emphasis on the signal processing and automatic defect classification. The detection of notch-like defects in the strands is based on the reflections of guided waves that are excited and detected by magnetostrictive ultrasonic transducers. The Discrete Wavelet Transform was used to extract damage-sensitive features from the detected signals and to construct a multi-dimensional Damage Index vector. The Damage Index vector was then fed to an Artificial Neural Network to provide the automatic classification of (a) the size of the notch and (b) the location of the notch from the receiving sensor. Following an optimization study of the network, it was determined that five damage-sensitive features provided the best defect classification performance with an overall success rate of 90.8%. It was thus demonstrated that the wavelet-based multidimensional analysis can provide excellent classification performance for notch-type defects in strands.

A Feasibility Study of Guided Wave Technique for Rail Monitoring

  • Rose, J.L.;Lee, C.M.;Cho, Y.
    • 비파괴검사학회지
    • /
    • 제26권6호
    • /
    • pp.411-416
    • /
    • 2006
  • The critical subject of transverse crack detection in a rail head is treated in this paper. Conventional bulk wave ultrasonic techniques oftenfail because of shelling and other surface imperfections that shield the defects that lie below the shelling. A guided wave inspection technique is introduced here that can send ultrasonic energy along the rail under the shelling with a capability of finding the deleterious transverse crack defects. Dispersion curves are generated via a semi analytical finite element technique along with a hybrid guided wave finite element technique to explore the most suitable modes and frequencies for finding these defects. Sensor design and experimental feasibility experiments are also reported.

Non-contact damage monitoring technique for FRP laminates using guided waves

  • Garg, Mohit;Sharma, Shruti;Sharma, Sandeep;Mehta, Rajeev
    • Smart Structures and Systems
    • /
    • 제17권5호
    • /
    • pp.795-817
    • /
    • 2016
  • A non-contact, in-situ and non-invasive technique for health monitoring of submerged fiber reinforced polymers (FRP) laminates has been developed using ultrasonic guided waves. A pair of mobile transducers at specific angles of incidence to the submerged FRP specimen was used to excite Lamb wave modes. Lamb wave modes were used for comprehensive inspection of various types of manufacturing defects like air gaps and missing epoxy, introduced during manufacturing of FRP using Vacuum Assisted Resin Infusion Molding (VARIM). Further service induced damages like notches and surface defects were also studied and evaluated using guided waves. Quantitative evaluation of transmitted ultrasonic signal in defect ridden FRPs $vis-{\grave{a}}-vis$ healthy signal has been used to relate the extent of damage in FRPs. The developed technique has the potential to develop into a quick, real time health monitoring tool for judging the service worthiness of FRPs.

비접촉 Lamb-EMAT를 이용한 두께감육 평가에 관한 연구 (Non-contact Ultrasonic Technique for the Thin Defect Evaluation by the Lamb-EMAT)

  • 김태형;박익근;이철구;김용권;김현묵;조용상
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.194-196
    • /
    • 2005
  • Ultrasonic guided waves are gaining increasing attention for the inspection of platelike and rodlike structures. At the same time, inspection methods that do not require contact with the test piece are being developed for advanced applications. This paper capitalizes on recent advances in the areas of guided wave ultrasonics and noncontact ultrasonics to demonstrate a superior method for the nondestructive detection of thinning defects simulating hidden corrosion in thin aluminum plates. The proposed approach uses EMAT(electro-magnetic acoustic transducer) for the noncontact generation and detection of guided plate waves. Interesting features in the dispersive behavior of selected guided modes are used for the detection of plate thinning. It is shown that mode cutoff measurements provide a qualitative detection of thinning defects. Measurement of the mode group velocity can be also used to quantify of thinning depth.

  • PDF