• Title/Summary/Keyword: Guided Flight System

Search Result 33, Processing Time 0.017 seconds

The Optical Tracking Method of Flight Target using Kalman Filter with DTW (DTW와 Kalman Filter를 결합한 비행표적의 광학추적 방법)

  • Jang, Sukwon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.217-222
    • /
    • 2021
  • EOTS(Electro-Optical Tracking System) is utilized in acquiring visual information to assess a guided missile's performance. As the missile travels so fast, it is almost impossible for operator to re-capture the lost target. The RADAR or telemetry data are used to re-capture the lost target however facilities to receive real time data is required, which constrains selection of tracking site. Unlike aforementioned data, pre-calculated nominal trajectory can be used without communication facility. This paper proposes a method to predict lost target's state by employing nominal trajectory. Firstly, observed trajectory and nominal trajectory are compared using DTW and current target's state is predicted. The predicted state is used as observation in Kalman filter's correction phase to predict target's next state. The plausibility of the proposed method is verified by applying on actual missile trajectory.

High Speed Propulsion System Test Research Using a Shock Tunnel (충격파 터널을 이용한 고속추진기관 시험 연구)

  • Park, Gisu;Byun, Jongryul;Choi, Hojin;Jin, Yuin;Park, Chul;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.43-53
    • /
    • 2014
  • Shock tunnels are known to be capable of simulating flow-field environments of supersonic and hypersonic flights. They have been operated successfully world-wide for almost half a century. As a consequence of the strong interest in hypersonic vehicles in Korea, attention has been given on this type of facility and so an intermediate-sized shock tunnel has lately been built at KAIST. In the light of this, this paper presents our tunnel performance and some of the model scramjet test data. The freestream flow used in this work replicates a supersonic combustor environment for a Mach 5.7 flight speed.

Active-Sensing Based Damage Monitoring of Airplane Wings Under Low-Temperature and Continuous Loading Condition (능동센서 배열을 이용한 저온 반복하중 환경 항공기 날개 구조물의 손상 탐지)

  • Jeon, Jun Young;Jung, Hwee kwon;Park, Gyuhae;Ha, Jaeseok;Park, Chan-Yik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.345-352
    • /
    • 2016
  • As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beamforming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.