• Title/Summary/Keyword: Guide vane setting

Search Result 7, Processing Time 0.024 seconds

Influence of Guide Vane Setting in Pump Mode on Performance Characteristics of a Pump-Turbine

  • Li, Deyou;Wang, Hongjie;Nielsen, Torbjorn K.;Gong, Ruzhi;Wei, Xianzhu;Qin, Daqing
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.154-163
    • /
    • 2017
  • Performance characteristics in pump mode of pump-turbines are vital for the safe and effective operation of pumped storage power plants. However, the head characteristics are different under different guide vane openings. In this paper, 3-D steady simulations were performed under 13mm, 19mm and 25mm guide vane openings. Three groups of operating points under the three GVOs were chosen based on experimental validation to investigate the influence of guide vane setting on flow patterns upstream and downstream. The results reveal that, the guide vane setting will obviously change the flow pattern downstream, which in turn influences the flow upstream. It shows a strong effect on hydraulic loss (power dissipation) in the guide and stay vanes. It is also found that the hydraulic loss mainly comes from the flow separation and vortices. In addition, in some operating conditions, the change of guide vane opening will change the flow angle at the runner inlet and outlet, which will change the Euler momentum (power input). The joint action of Euler momentum and hydraulic loss results in the change of the head characteristics.

Effects of Variable Guide Vane Setting Angle on the Performance of Multi-Stage Axial Compressor (가변안내깃 설치각이 다단 축류압축기 성능에 미치는 영향)

  • Park, JunYoung;Seo, JeongMin;Lim, HyungSoo;Choi, Bumseok;Choi, Taewoo;Choi, Jaeho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.9-18
    • /
    • 2016
  • Generally the variable guide vane is used to secure the sufficient operating point in the off-design condition. In this study the inlet guide vane, 1st and 2nd stators in a multi-stage axial compressor are movable to obtain the operating range. So the effects of variable guide vane setting angle on the performance of 2.5 stage axial compressor were investigated at 70 % and 90 % conditions of nominal rotating speed in this paper. The steady-state and unsteady numerical analyses were conducted at each operating condition. The performance map, lost efficiency and flow fields were compared.

2-D & 3-D Calculations for the Effect of Guide Vane of Impulse Turbine

  • Hyun Beom-Soo;MOON Jae-Seung;Hong Sung-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.235-240
    • /
    • 2004
  • This paper deals with the performance analysis of impulse turbine for owe type wave energy conversion device. Numerical analysis was performed using a commercially-available software FLUENT. This parametric study includes the variation of the setting angle of guide vane. Since parametric study at various flaw coefficients requires tremendous amounts of computing time, two-dimensional cascade flaw approximation was employed to find out optimum principal particulars in rather simple manner. Full three-dimensional calculation was also performed for several cases to confirm the validity of two-dimensional approach. Results were compared to other experimental data, for instance Setoguchi et al (2001)'s extensive set of data, and found to be well demonstrating the usefulness of 2-D analysis. Advantages and disadvantages of each method were also evaluated.

  • PDF

Effect of Guide Vane on the Performance of Impulse Turbine for Wave Energy Conversion

  • HYUN BEOM-SOO;MOON JAE-SEUNG;HONG SEOK-WON
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.1-7
    • /
    • 2004
  • This paper deals with the performance analysis of the impulse turbine for a owe type wave energy conversion device. Numerical analysis was performed using the commercially-available software FLUENT. This parametric study includes variation of the setting angle of the guide vane. Since parametric study at various flow coefficients requires a tremendous amount of computing time, two-dimensional cascade flow approximation was employed to determine the optimum principal particulars in a rather simple manner. A Full three-dimensional calculation was also performed for several cases to confirm the validity of the two-dimensional approach. Results were compared to other experimental data, such as Setoguchi et al. (2001)'s extensive set of data, and found that the usefulness of 2-D analysis was well demonstrated. The advantages of each method were also evaluated.

NUMERICAL PREDICTION OF THE OPTIMAL STAGGER ANGLES FOR A HIGH-POWER TURBO BLOWER (고마력 터보 블로어의 최적 깃배치각에 관한 수치 예측)

  • Park, T.G.;Chung, H.T.;Park, J.Y.;Sung, B.I.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.75-81
    • /
    • 2011
  • The turbo blowers having large power capacity are generally composed of the variable inlet guide vane, the impeller and the variable diffuser. In the present study, the effect of the stagger angles on the aerodynamic performances has been investigated by CFD methods. The design specifications of the reference model having 400kW power were given as 7.43kg/s of mass flow rate, 1.66 of pressure ratio with 12000rpm of impeller rotating speed. As the first simulation parameter, the diffuser vane angle was varied in the range of ${\pm}$20 degree from the initial-design point. The inlet guide vane angles, as the second one, was changed in the range of ${\pm}$40 degree from the initial-design point. The commercial Navier-Stokes solver, ANSYS-CFX, was applied to solve the three-dimensional unsteady flow fields inside the turbo blower. Through the numerical results, the desirable setting angles were proposed to fit the best performance to the variation of the operating conditions.

A Study of Self Starting Characteristics of Impulse Turbine of Wave Energy Conversion (파력발전용 임펄스 터어빈의 자기 기동 특성 해석)

  • MOON JAE-SEUNG;HYUN BEOM-SOO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.220-224
    • /
    • 2004
  • The present paper deals with the numerical study to analyze the self-starting performance of impulse turbine in a reciprocating air flow generated by sinusoidal motion of wave inside oscillating water column. Result was compared to that of Wells turbine, well-known wave energy conversion device, and showed that the impulse turbine has a superior self-starting ability. More detailed parametric study was performed to demonstrate the effects of moment of inertia of rotor, loading torque, tip clearance and angle of guide vane.

  • PDF

Analysis of Operation Conditions of a Reheat Cycle Gas Turbine for a Combined Cycle Power Plant (복합화력 발전용 재열사이클 가스터빈의 운전상태 분석)

  • Yoon, Soo-Hyoung;Jeong, Dae-Hwan;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.35-44
    • /
    • 2006
  • Operation conditions of a reheat cycle gas turbine for a combined cycle power plant was analyzed. Based on measured performance parameters of the gas turbine, a performance analysis program predicted component characteristic parameters such as compressor air flow, compressor efficiency, efficiencies of both the high and low pressure turbines, and coolant flows. The predicted air flow and its variation with the inlet guide vane setting were sufficiently accurate. The compressor running characteristic in terms of the relations between air flow, pressure ratio and efficiency was presented. The variations of the efficiencies of both the high and low pressure turbines were also presented. Almost constant flow functions of both turbines were predicted. The current methodology and obtained data can be utilized for performance diagnosis.