• Title/Summary/Keyword: Guide rail

Search Result 123, Processing Time 0.026 seconds

Air-Gap Signal Treatment based Fuzzy Rule in Rail-Joint (Rail-Joint에서 퍼지룰을 기반으로하는 공극신호처리법)

  • Sung, H.K.;Jho, J.M.;Lee, J.M.;Bae, D.K.;Kim, B.S.;Shin, B.C.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1071-1072
    • /
    • 2006
  • Maglev using EMS becomes unstable by unexpected big air-gap disturbance. The main causes of the unexpected air-gap disturbance are step-wise rail joint and large distance between rail splices. For the stable operation of the Maglev, the conventional system uses the threshold method, which selects one gap sensor among two gap sensors installed on the magnet to read the gap between magnet and guide rail. But the threshold method with a wide bandwidth makes the discontinuous air-gap signal at the rail joints because of the offset in air gap sensors and/or the step-wise rail joins. Further more, in the case of the one with a narrow bend-width, it makes Maglev system unstable because of frequent alternation. In this paper, a new method using fuzzy rule to reduce air-gap disturbances proposed to improve the stability of Maglev system. It treats the air-gap signal from dual gap sensors effectively to make continuous signal without air gap disturbance. Simulation and experiment results proved that the proposed scheme was effective to reduce air-gap disturbance from dual gap sensors in rail joints.

  • PDF

Analysis of the Motion Errors in Linear Motion Guide (직선베어링 안내면의 운동오차 해석)

  • Kim, Kyung-Ho;Park, Chun-Hong;Lee, Hu-Sang;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.139-148
    • /
    • 2002
  • Motion errors of linear motion guideway are analyzed theoretically in this paper. For the analysis, an new algorithm predicting motion errors of bearing and guideway is proposed using the Hertz's elastic deformation theory. Accuracy averaging effect can be calculated quantitatively by analyzing relationship between motion errors of guideway and spatial frequency of rail form error. Influences of design parameters on the motion errors including the number of balls, preload, ball diameter, bearing length and the number of bearings are analyzed. As it is difficult to measure the rail form error, experimental results are compared with results analyzed by the equivalent analysis method which evaluate the motion errors of guideway using the measured errors of bearing. From the experimental results, it is confirmed that the proposed analysis method it effective lo analyze the motion errors of linear motion bearing and guideway.

A Study on Forming Analysis for the Roll Forming Process of 3 Point Under Rail (3점 언더레일 슬라이드의 롤포밍 공정에 대한 성형해석연구)

  • Jung, D.W.;Park, S.H.;Jeong, J.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.52-58
    • /
    • 2012
  • Roll forming process is one of the most widely used processes in the world for forming metals such as a furniture drawer guide or an up and down slide guide. It can manufacture goods of the uniform cross section on a large scale throughout the continuous processing. In the domestic design and manufacture, roll forming process for production is taking most of the method of 2-point under rail slide. However, this method is vulnerable to the structural strength and stiffness is not suitable for high load conditions. Therefore, through systematic study of high load, low noise 3-point ball type of under rail slide its own design and manufacturing technology is the need to build. In this paper, to make center member of 3-point ball-type under rail slide for the refrigerator doors, the roll forming modeling and simulation are performed. Tensile test is performed about SCP-1 1/2H for determine the mechanical properties of materials. Modeling and simulation of roll forming is used MSC.MARC software of a dedicated analysis program used by rigid plastic finite element method. Interference between the roll and the final shape are predicted from the results of the simulation.

Simulation and Experimental Study on the Impact of Light Railway Train Bridge Due to Concrete Rail Prominence (주행면 단차에 의한 경량전철 교량의 충격 시뮬레이션 및 실험)

  • Jeon, Jun-Tai;Song, Jae-Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.45-52
    • /
    • 2010
  • This study pointed on the dynamic impact of AGT (Automated Guide-way Transit) bridge, due to concrete rail prominence. An experiment was done with 30 m P.S.C. bridge in AGT test line in Kyungsan. An artificial prominence with 10 mm hight, was installed at the mid span of concrete rail. And computer simulation was executed for the artificial prominence. As an experiment result, in the case of with prominence, bridge acceleration responses are increased 50% at the speed range of 20 km/h-60 km/h, and bridge displacement responses increased slightly. With these results, the prominence of concrete rail can be induce excess impact and vibration. And the computer program simulated much the same as experiments. So this program can be used for AGT bridge design and formulate the standard of concrete rail management.

전달함수를 이용한 유정압테이블 운동정밀도 해석법의 제안 및 이론적 검증

  • 오윤진;박천홍;이후상;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.9-14
    • /
    • 2001
  • A new model utilizing a transfer function is introduced in the present paper for analizing motion errors of hydrostatic tables. Relationship between film reaction force in a single hydrostatic pad and form error of a guide rail is derived at various spacial frequencies by finite element analysis, and it is expressed as a transfer function. This transfer function clarifies so called averaging effect of the oil film quantitively. For example, it is found that the amplitide of the film reaction force is reduced as the spacial frequency increases or relative width of the pocket is reduced. Motion errors of a multiple pad table is estimated from transfer function, geometric relationship between each pads and form errors of a guide rail, which is named as Transfer Function Method. Calculated motion errors by TFM show good agreement with motion errors calculated by Multi Pad Method, which is considered entire table as an analysis object. From the results, it is confirmed that the proposed TFM is very effective to analyze the motion errors of hydrostatic tables.

  • PDF

A Study on the Dynamic Interaction Analysis of Curved Bridge-AGT Vehicle (곡선교량-AGT 차량의 상호작용에 의한 동적 거동에 관한 연구)

  • Lee An-Ho;Kim Ki-Bong;Kim Jae-Min
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.376-381
    • /
    • 2003
  • This study is focused on the dynamic response of curved bridge when the rubber tired AGT vehicles is running with alternative articulations. For the analytic approach, there is necessary for the three dimensional vehicle model with 11 degree of freedom and the three dimensional curved bridge model by means of finite element method. It can be described by conventional Lagrangian formula with respect to the dynamic interactions between vehicles and its met bridge. The formula is implemented by Fortran language on the simulation program designated BADIA II(Bridge-AGT Dynamic Interaction Analysis II). The solutions of the formula are derived by Newmark- ${\beta}$ method. The BADIA II is for the dynamic interactions between vehicle and curved bridge in terms of the roughness of running surface and guide rail. The applicability of the BADIA II is verified in terms of displacement and modal frequency. This study is described that the dynamic interactive behaviors between the rubber tired AGT vehicle and curved bridge in terms of the radius of curvatures of curved bridge, vehicle articulations, vehicle speeds, vehicle weights, flatness of running surface and roughness of guide rail using BADIA II.

  • PDF

A Study on the Deflection of Rail by Bolt Tightening (볼트 체결에 의한 직선운동베어링 레일 변형에 관한 연구)

  • 김태범;이상조;김익수;이위로
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.794-797
    • /
    • 2001
  • The basic design of today s rolling linear guides with rails is outlined in a French patent from 1932, it was not until the early 1970s that linear guides were commercialized. Progress with the numerical control of machine tools led to higher speed and accuracy of machines that exposed limitations of conventional sliding guides in terms of durability and response capability. As a result, rolling guides, having better high-speed performance and greater compatibility with electronics, began to be used widely. This paper examined theoretically and experimentally the influence of rail bolt tightening on the motion accuracy of linear guides. The rail of a linear guide is tightened and fixed to the base component by bolts. Naturally, the rail is an elastic body and the compression force generated by tightening the volts causes its deflection. Compromising motion accuracy, the rail deforms wavily in a longitudinal direction corresponding to the bolt pitch. The relation between rail position and deflection(sinking) amount caused by bolt tightening was analyzed through FEM analysis in this paper.

  • PDF

A study on gap treatment in EMS type Maglev (상전도 흡입식 자기부상열차에서 공극처리방식에 대한연구)

  • Sung, Ho-Kyung;Jho, Jeong-Min;Lee, Jong-Moo;Kim, Dong-Sung
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.189-197
    • /
    • 2006
  • Maglev using EMS becomes unstable by unexpected big air-gap disturbance. The main causes of the unexpected air-gap disturbance are step-wise rail joint and large distance between rail splices. For the stable operation of the Maglev, the conventional system uses the threshold method, which selects one gap sensor among two gap sensors installed on the magnet to read the gap between magnet and guide rail. But the threshold method with a wide bandwidth makes the discontinuous air-gap signal at the rail joints because of the offset in air gap sensors and/or the step-wise rail joins. Further more, in the case of the one with a narrow bend-width, it makes Maglev system unstable because of frequent alternation. In this paper, a new method using fuzzy rule to reduce air-gap disturbances proposed to improve the stability of Maglev system. It treats the air-gap signal from dual gap sensors effectively to make continuous signal without air gap disturbance. Simulation and experiment results proved that the proposed scheme was effective to reduce air-gap disturbance from dual gap sensors in rail joints.

  • PDF

The Organization of Interface Items for Rubber Tired AGT System of Light Rail Transit (경량전철 고무차륜 AGT 시스템의 인터페이스 체계 정립)

  • Lee, An-Ho;Kim, Jae-Min
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.98-103
    • /
    • 2003
  • Recently, to solve the urban transportation problem, the introduction of Light Rail Transit system has been proceeded positively. therefore, development of the Korean standard LRT system in which safety, efficiency and cost effectiveness are emphasized. The Korea Railroad Research institute study on Rubber Tired AGT system of Light Rail Transit to obtain the essential technology and engineering know-how, which leads lower LRT construction cost. In the development procedure, SE(system Engineering) is needed for combination of subsystem and optimum operation effect. This study is focused on the interface of LRT subsystem(Development of the rubber tired LRT, Power supply system, signalling and train control system, Elevated track structure for the rubber tired LRT), a important part of SE, to develop of the driverless LRT system and establish the test and evaluation.

  • PDF

A Reliability Allocation for Vehicle System of Light Rail Transit (경량전철 차량시스템의 신뢰도 배분)

  • Jeong, Rak-Gyo;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.357-363
    • /
    • 2002
  • The target reliability values are defined for the train, signaling, rail track and electric power supply system of the LRT under development. The allocation of the reliability value is based on the failure rate and the failure type in the Korean subways. The reliability allocation in the train system is the made ore detail than others. The purpose of the allocation is to verify the reliability value of the results from each of the development stage, which could be the designing, manufacturing and purchasing work. The reliability of braking system, traction system, door system and other control system could be verified by establishing reliability models of these system. It could also enable us to estimate and analyse the reliability value and redo the work if necessary to achieve the shooting reliability value. A guide to the LRT reliability criteria is to be prepared after running test on the test track.