• Title/Summary/Keyword: Guide Path

Search Result 196, Processing Time 0.026 seconds

Prediction of Fire Spread and Real-Time Evacuation System according to Spatial Characteristics (공간적 특성에 따른 화재 확산 예측 및 실시간 대피 시스템 연구)

  • Nam-Gi An;Geon-Hui Lee;Min-jeong Kim;Kyu-Ho Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.617-623
    • /
    • 2023
  • Among the fire incidents in Korea over the past decade, building fires are the most common, and property and human casualties are the most common. However, the existing fire fighting system does not only inform the location of emergency exits and guide safe routes to help casualties evacuate smoothly. A system was proposed to help successful evacuation by distinguishing vertical and horizontal characteristics using spatial characteristics. In this study, an effective evacuation system was proposed by predicting fires using temperature detection sensors and smoke sensor values, and calculating the optimal evacuation path through the Dijkstra algorithm.

Optimal Design of a Coudé Mirror Assembly for a 1-m Class Ground Telescope

  • Jaehyun Lee;Hyug-Gyo Rhee;Eui Seung Son;Jeon Geon Kang;Ji-Young Jeong;Pilseong Kang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.435-442
    • /
    • 2023
  • These days, the size of a reflective telescope has been increasing for astronomical observation. An additional optical system usually assists a large ground telescope for image analysis or the compensation of air turbulence. To guide collimated light to the external optical system through a designated path, a coudé mirror is usually adopted. Including a collimator, a coudé mirror of a ground telescope is affected by gravity, depending on the telescope's pointing direction. The mirror surface is deformed by the weight of the mirror itself and its mount, which deteriorates the optical performance. In this research, we propose an optimization method for the coudé mirror assembly for a 1-m class ground telescope that minimizes the gravitational surface error (SFE). Here the mirror support positions and the sizes of the mount structure are optimized using finite element analysis and the response surface optimization method in both the horizontal and vertical directions, considering the telescope's altitude angle. Throughout the whole design process, the coefficients of the Zernike polynomials are calculated and their amplitude changes are monitored to determine the optimal design parameters. At the same time, the design budgets for the thermal SFE and the mass and size of the mount are reflected in the study.

Causal Model of Herb Use Behavior Among Working-age Adults in Thailand

  • Pitchada Prasittichok;Patcharee Duangchan;Sattawat Prapasiri;Ungsinun Intarakamhang
    • Journal of Preventive Medicine and Public Health
    • /
    • v.57 no.4
    • /
    • pp.399-406
    • /
    • 2024
  • Objectives: This study developed a causal relationship model of herb use from observational data and analyzed the direct and indirect effects of herb use on health according to the model. Methods: A cross-sectional study was conducted with 400 participants aged 26-59 years, selected through multistage random sampling. The instruments used for data collection included demographic information, herb use, health literacy (HL), perceived social support, societal values, and attitudes toward herb use. The conceptual model, hypothesized based on prior evidence, was tested using confirmatory factor analysis through structural equation modeling. Path coefficients were estimated using the maximum likelihood method. Results: The final model utilized empirical data, which showed that perceived social support had the most significant impact on herb use. This was followed by HL, positive attitudes toward herbal remedies, and societal values, with coefficients of 0.31, 0.18, and 0.16, respectively. When analyzing variables that indirectly affected herb use, it was clear that positive attitudes, perceived social support, and societal values significantly influenced herb use through HL, with influence coefficients of 0.08, 0.16, and 0.04, respectively. Together, these variables accounted for 68% of the variance in herb use. Conclusions: The findings from this study can be utilized to develop and implement strategies that guide the use of herbal products, ultimately aiming to improve human health.

A PLS Path Modeling Approach on the Cause-and-Effect Relationships among BSC Critical Success Factors for IT Organizations (PLS 경로모형을 이용한 IT 조직의 BSC 성공요인간의 인과관계 분석)

  • Lee, Jung-Hoon;Shin, Taek-Soo;Lim, Jong-Ho
    • Asia pacific journal of information systems
    • /
    • v.17 no.4
    • /
    • pp.207-228
    • /
    • 2007
  • Measuring Information Technology(IT) organizations' activities have been limited to mainly measure financial indicators for a long time. However, according to the multifarious functions of Information System, a number of researches have been done for the new trends on measurement methodologies that come with financial measurement as well as new measurement methods. Especially, the researches on IT Balanced Scorecard(BSC), concept from BSC measuring IT activities have been done as well in recent years. BSC provides more advantages than only integration of non-financial measures in a performance measurement system. The core of BSC rests on the cause-and-effect relationships between measures to allow prediction of value chain performance measures to allow prediction of value chain performance measures, communication, and realization of the corporate strategy and incentive controlled actions. More recently, BSC proponents have focused on the need to tie measures together into a causal chain of performance, and to test the validity of these hypothesized effects to guide the development of strategy. Kaplan and Norton[2001] argue that one of the primary benefits of the balanced scorecard is its use in gauging the success of strategy. Norreklit[2000] insist that the cause-and-effect chain is central to the balanced scorecard. The cause-and-effect chain is also central to the IT BSC. However, prior researches on relationship between information system and enterprise strategies as well as connection between various IT performance measurement indicators are not so much studied. Ittner et al.[2003] report that 77% of all surveyed companies with an implemented BSC place no or only little interest on soundly modeled cause-and-effect relationships despite of the importance of cause-and-effect chains as an integral part of BSC. This shortcoming can be explained with one theoretical and one practical reason[Blumenberg and Hinz, 2006]. From a theoretical point of view, causalities within the BSC method and their application are only vaguely described by Kaplan and Norton. From a practical consideration, modeling corporate causalities is a complex task due to tedious data acquisition and following reliability maintenance. However, cause-and effect relationships are an essential part of BSCs because they differentiate performance measurement systems like BSCs from simple key performance indicator(KPI) lists. KPI lists present an ad-hoc collection of measures to managers but do not allow for a comprehensive view on corporate performance. Instead, performance measurement system like BSCs tries to model the relationships of the underlying value chain in cause-and-effect relationships. Therefore, to overcome the deficiencies of causal modeling in IT BSC, sound and robust causal modeling approaches are required in theory as well as in practice for offering a solution. The propose of this study is to suggest critical success factors(CSFs) and KPIs for measuring performance for IT organizations and empirically validate the casual relationships between those CSFs. For this purpose, we define four perspectives of BSC for IT organizations according to Van Grembergen's study[2000] as follows. The Future Orientation perspective represents the human and technology resources needed by IT to deliver its services. The Operational Excellence perspective represents the IT processes employed to develop and deliver the applications. The User Orientation perspective represents the user evaluation of IT. The Business Contribution perspective captures the business value of the IT investments. Each of these perspectives has to be translated into corresponding metrics and measures that assess the current situations. This study suggests 12 CSFs for IT BSC based on the previous IT BSC's studies and COBIT 4.1. These CSFs consist of 51 KPIs. We defines the cause-and-effect relationships among BSC CSFs for IT Organizations as follows. The Future Orientation perspective will have positive effects on the Operational Excellence perspective. Then the Operational Excellence perspective will have positive effects on the User Orientation perspective. Finally, the User Orientation perspective will have positive effects on the Business Contribution perspective. This research tests the validity of these hypothesized casual effects and the sub-hypothesized causal relationships. For the purpose, we used the Partial Least Squares approach to Structural Equation Modeling(or PLS Path Modeling) for analyzing multiple IT BSC CSFs. The PLS path modeling has special abilities that make it more appropriate than other techniques, such as multiple regression and LISREL, when analyzing small sample sizes. Recently the use of PLS path modeling has been gaining interests and use among IS researchers in recent years because of its ability to model latent constructs under conditions of nonormality and with small to medium sample sizes(Chin et al., 2003). The empirical results of our study using PLS path modeling show that the casual effects in IT BSC significantly exist partially in our hypotheses.

Development of a Crash Cushion Using the Frictional and Inertial Energy by Computer Simulation (컴퓨터 시뮬레이션에 의한 관성과 마찰 에너지를 이용하는 충격흡수시설의 개발)

  • Kim, Dong-Seong;Kim, Kee-Dong;Ko, Man-Gi;Kim, Kwang-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.23-30
    • /
    • 2009
  • Crash cushions are protective devices that prevent errant vehicles from impacting on fixed objects. This function is accomplished by gradually decelerating a vehicle to a safe stop in a relatively short distance. Commonly used crash cushions generally employ one of two concepts to accomplish this function. The first concept involves the absorption of the kinetic energy of a moving vehicle by crushable or plastically deformable materials and the other one involves the transfer of the momentum of a moving vehicle to an expendable mass of material located in the vehicle's path. Crash cushions using the first concept are generally referred to as compression crash cushions and crash cushions using the other concept are generally referred to as inertial crash cushion. The objective of this research is the development of a compression-type crash cushion by employing the two concepts simultaneously. To minimize the number of full-scale crash tests for the development of the crash cushion, preliminary design guide considering inertial and frictional energy absorption was constructed and computer simulation was performed. LS-DYNA program, which is most widely used to analyze roadside safety features, was used for the computer simulation. The developed crash cushion satisfied the safety evaluation criteria for various impact conditions of CC2 performance level in the Korean design guide.

A Study on Walking Characteristics of Novices at Onboard Environments under Blackout Conditions in a Training Ship (선내 정전조건에서 승선환경 비숙련자의 이동특성 실험 연구)

  • Hwang, Kwang-Il;Cho, Ik-Soon;Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.74-81
    • /
    • 2016
  • Because most of the passengers are not accustomed with onboard environments, it is very important to analyze and predict the behaviors' characteristics of passengers under disasters' conditions, and apply those results for making countermeasures. On this view point, this study focused on the walking characteristics of onboard-novices are tested and analyzed under blackout condition that has high possibility to happen. As a result, comparing to under normal lighting conditions, the waking times under blackout conditions are 155.8~247.1 % longer on full path, 56.9~331.7 % on corridors, 75.3~152.9 % on stairs, respectively. And under the same blackout conditions, walking times in cases of the exit guidance marks being attached on top side of walls saved times, like 21.6~24.0 % on full path, 37.7~58.9 % on corridors, 18.7~19.2 % on stairs, comparing to the cases of exit guidance marks being not attached. On the other hand, after tests under without exit guidance marks, 60.7% among respondents answered that internal structures like wall/stair (35.7 %) and handrail (25 %) are very helpful to decide way findings, and 28.6 % selected personal instincts is important. But 50 % responded that exit guide marks are effective to find ways, after the tests under with exit guidance marks.

Improvement of Bipolar Magnetic Guidance Sensor Performance using Fuzzy Inference System (양극성 자기유도센서의 성능 향상을 위한 퍼지 추론 시스템)

  • Park, Moonho;Cho, Hyunhak;Kim, Kwangbaek;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.58-63
    • /
    • 2014
  • Most of light duty AGVs(AGCs) using tape of magnetic for the guide path have digital guidance magnetic sensor. Digital guidance magnetic sensor using magnet-tape is on/off type and has positioning error of magnet-tape as 10~50 mm. AGC using this sensor doesn't induce accurate position of magnet-line which is magnet-tape because of magnetic field which motor in AGC creates, outer magnetic field, earth's magnetic field, etc. AGC when driving wobbles due to this error and this error can cause path deviation. In this paper, we propose fuzzy inference system for improvement of bipolar analog magnetic guidance sensor performance. Fuzzy is suitable in term of fault tolerance, uncertainty tolerance, real-time operation, and Nonlinearity as compared with other algorithms. In previous research, we produced bipolar magnetic guidance sensor and we set the threshold in order to calculate digital values of magnet position. Fuzzy inference system is designed using outputs of Analog hall sensors. Magnet position calculated by digital method is improved by outputs of this system. In result, proposed method was verified by improving performance of magnetic guidance sensor.

Intelligent Path Guide System using Fuzzy Logic (퍼지 로직을 이용한 지능형 경로 안내 시스템)

  • Choi, Woo-Kyung;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.68-74
    • /
    • 2008
  • The Ubiquitous Society is being attained gradually as it got through the step of super-high speed internet mobile and digital convergence. Now, it is being variously spread to no only the little ordinaries of communication but also fields of economy and industry. Specially, RFID and Navigation are being issued at home and foreign. These are prospected to give assistances that it bring along the competitive power of nation. But inflection range of RFID and Navigation is localized in the most sin lest. This paper proposes system to reflect the individual and special quality using RFID and Navigation and to fit easily changing environment. And we studied to use what kinds of information in the special environment. We used Fuzzy Logie and TSP for making the intelligent navigation system with more information.

Mechanism of Micro-V Grooving with Single Crystal Diamond Tool (단결정 다이어몬드 공구를 이용한 Micro-V 홈 가공기구)

  • Park D.S.;Seo T.I.;Kim J.K.;Seong E.J.;Han J.Y.;Lee E.S.;Cho M.W.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1223-1227
    • /
    • 2005
  • Fine microgroove is the key component to fabricate micro-grating, micro-grating lens and so on. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. This study deals with the creation of ultra-precision micro grooves using non-rotational diamond tool and CNC machining center. The shaping type machining method proposed in the study allows to produce V-shaped grooves of $40\mu{m}$ in depth with enough dimensional accuracy and surface. For the analysis of machining characteristics in micro V-grooving, three components of cutting forces and AE signal are measured and processed. Experimental results showed that large amplitude of cutting forces and AE appeared at the beginning of every cutting path, and cutting forces had a linear relation with the cross-sectional area of uncut chip thickness. From the results of this study, proposed micro V-grooving technique could be successfully applied to forming the precise optical parts like prism patterns on light guide panel of TFT-LCD.

  • PDF

A PRACTITIONERS VIEW OF MODERN DEVELOPMENTS IN LIMNOLOGY

  • IMBERGER J.;ANTENUCCI J.;BRUCE L.;DUCAS A.;EWING T.;FEAVER S.;HIPSEY M.;IMERITO A.;LAM C.;MORILLO S.;ROMERO J.;SHIMIZU K.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09a
    • /
    • pp.11-12
    • /
    • 2005
  • With the great advances in process understanding, sensor and instrumentation technology and modelling capability it is important to ask what if any practical benefits can the lake manager and operator look forward to. Here, we examine some of the more important problems facing operators of drinking reservoirs, hydro-lakes and lakes used predominantly for recreation and the environment. In drinking reservoirs the main problems originate from increased loadings of nutrients leading to increased biomass and biomass that may give rise to toxins, of anthropogenic chemicals such as metals and synthetic organics and of pathogens of different types. Hydro-lakes are predominantly plagued by problems arising from low oxygen levels in the hypolimnion and in recreational and environmentally sensitive lakes the biggest challenge for the operator is to maintain an existing or establish a new trophic hierarchy or protect the water body from foreign species. The control variables that are at an operator's disposal are the choice of lake water level, the modification of the water colunm stratification via a de-stratification system, the modification of the lake flow path with flow intervention. curtains, intervention in the catchments to modify the loadings flowing into a lake, manipulation of the trophic chain with introduction of new species and chemical dosing, the latter being of marginal use in a large lake. Each of these options is cost effective under certain-circumstances. We endeavour to provide a users guide for their application and show how, especially new instrumentation and modelling methodologies may be used to achieve an effective intervention.

  • PDF