• Title/Summary/Keyword: Growth-promoting effect

Search Result 477, Processing Time 0.028 seconds

Growth-Promoting Effects of Vegetable Extracts on Selected Human Lactic Acid Bacteria

  • Kim, Moo-Key;Kim, Byung-Su;Baek, Bong-Rea;Shin, Dong-Hwa;Lee, Hoi-Seon
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.3
    • /
    • pp.192-196
    • /
    • 2001
  • Ethanol extracts from 36 vegetable samples were assayed for their growth-promoting effects on Bifidobacterium bifidum, B. longum, and Lactobacillus casei The growth-promoting effects varied according to bacterial strain and vegetable species. In modified Gy rgy broth, extracts of Lactuca sativa, Lycopersicon esculentum and L escutentum var. cerasiforme exhibited strong growth-promoting responses toward B. longum, and significant and strong growth- promoting response toward B. bifidum was observed in extracts of Actinidia arguta, Allium cepa, A. sativum, Brassica campestris subsp. napus vats. pekinensis, Capsicum frutescens, Daucus carota var. sativa, L sativa, 1. esculentum and L. esculentum var. cerasforme, Nelumbo nucifera, Cucurbita moschata, Lackca sativa var. capitata, and Rubus coreanus. For L casei, extracts of A. fshlosum, A. hberosum, Cichorium intbus, Cucurbita moschat\ulcorner Ipomoea batatas, 1. sativa var. capitata, L. esculentum, P. brachycarpa, Raphanus sativus, R. coreanus, and S. melongena strongly enhanced the growth of this bacteria. In modified Gy rgy broth, the promoting effect was most pronounced with B. bifidum and L. casei among lactic acid bacteria used. In MRS broth, A. arguta, A. cepa, A. sativum, B. campestris subsp. napus var. pekinensis, C. frutescens, and D. carota var. sativa L. satiw var. capitata, and R. coreanus strongly enhanced the growth of B. bifidum, Growth of B. longum was strongly affected by the addition of extracts from L. sativa var. capitata. For L casei, moderate growth-promoting responses were observed in 9 vegetable extracts. The promoting effect in MRS broth was most pronounced with B. bifidum among lactic acid bacteria used.

  • PDF

Isolation and Characterization of Cold-Adapted PGPB and Their Effect on Plant Growth Promotion

  • Li, Mingyuan;Wang, Jilian;Yao, Tuo;Wang, Zhenlong;Zhang, Huirong;Li, Changning
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1218-1230
    • /
    • 2021
  • Cold-adapted plant growth-promoting bacteria (PGPB) with multiple functions are an important resource for microbial fertilizers with low-temperature application. In this study, culturable cold-adapted PGPB strains with nitrogen fixation and phosphorus solubilization abilities were isolated. They were screened from root and rhizosphere of four dominant grass species in nondegraded alpine grasslands of the Qilian Mountains, China. Their other growth-promoting characteristics, including secretion of indole-3-acetic acid (IAA), production of siderophores and ACC deaminase, and antifungal activity, were further studied by qualitative and quantitative methods. In addition, whether the PGPB strains could still exert plant growth-promoting activity at 4℃ was verified. The results showed that 67 isolates could maintain one or more growth-promoting traits at 4℃, and these isolates were defined as cold-adapted PGPB. They were divided into 8 genera by 16S rRNA gene sequencing and phylogenetic analysis, of which Pseudomonas (64.2%) and Serratia (13.4%) were the common dominant genera, and a few specific genera varied among the plant species. A test-tube culture showed that inoculation of Elymus nutans seedlings with cold-adapted PGPB possessing different functional characteristics had a significant growth-promoting effect under controlled low-temperature conditions, including the development of the roots and aboveground parts. Pearson correlation analysis revealed that different growth-promoting characteristics made different contributions to the development of the roots and aboveground parts. These cold-adapted PGPB can be used as excellent strain resources suitable for the near-natural restoration of degraded alpine grasslands or agriculture stock production in cold areas.

Effect of Methylobacterium oryzae CBMB20 Inoculation and Methanol Spray on Growth of Red Pepper (Capsicum annuum L.) at Different Fertilizer levels (메탄올 살포와 Methylobacterium oryzae CBMB20 접종이 고추의 생육이 미치는 영향)

  • Chauhan, Puneet Singh;Lee, Gil-Seung;Lee, Min-Kyoung;Yim, Woo-Jong;Lee, Gyeong-Ja;Kim, Young-Sang;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.514-521
    • /
    • 2010
  • Fertilizers, plant growth promoting microbes and plant growth regulators should be combined together and used in order to achieve a maximal plant growth and yield in modern sustainable and ecological agricultural systems. In this study rhizosphere inoculation of Methylobacterium oryzae CBMB20 and foliar application of methanol were tested for their ability to promote the growth of red pepper plant at different levels of organic fertilizer. Rhizosphere inoculation of M. oryzae CBMB20 and foliar spray of methanol could promote red pepper plant growth and yield, and the growth promoting effect induced by the combined treatment of M. oryzae CBMB20 inoculation and foliar spray of methanol was more distinctive. This result suggests that a synergistic growth promoting effect of methanol spray and M. oryzae CBMB20 inoculation can be obtained in the combined treatment of the two growth promoting factors. The growth promoting effect was more significant in the lower fertilization rate, and the plant growth was not significantly different between 100 and 300% fertilizer treatments where both M. oryzae CBMB20 inoculation and foliar spray of methanol were included. This result indicates that, with the plant growth promoting effect of M. oryzae CBMB20 and methanol, fertilizer application rate can be profoundly reduced without any significant decreases in biomass accumulation and yield of crops.

Comparison of Saccharina japonica-Undaria pinnatifida Mixture and Minoxidil on Hair Growth Promoting Effect in Mice

  • Park, Ki Soo;Park, Dae Hwan
    • Archives of Plastic Surgery
    • /
    • v.43 no.6
    • /
    • pp.498-505
    • /
    • 2016
  • Background Algae have traditionally been used for promotion of hair growth. Use of hair regrowth drugs, such as minoxidil, is limited due to side effects. The aim of this study was to examine a mixture of Saccharina japonica and Undaria pinnatifida (L-U mixture) on hair growth and to compare the promoting effect of hair growth by a 3% minoxidil and a L-U mixture. Methods To evaluate the hair growth-promoting activity, saline, 50% ethanol, 3% minoxidil, and the L-U mixture were applied 2 times a day for a total of 14 days on the dorsal skin of C57BL/6 mice after depilation. Analysis was determined by using a high-resolution hair analysis system, real-time polymerase chain reaction, and H&E staining. Results On day 14, the hair growth effect of the L-U mixture was the same as that of the 3% minoxidil treatment. The L-U mixture significantly (P<0.05) stimulated hair growth-promoting genes, as vascular endothelial growth factor (VEGF) and insulin-like growth factor -1. Increase of VEGF was observed in the L-U mixture group compared with minoxidil and the negative control. In contrast, the L-U mixture suppressed the expression of transforming growth factor-${\beta}1$, which is the hair loss-related gene. In histological examination in the L-U mixture and minoxidil groups, the induction of an anagen stage of hair follicles was faster than that of control groups. Conclusions This study provides evidence that the L-U mixture can promote hair growth in mice, similar to the effect from minoxidil, and suggests that there is potential application for hair loss treatments.

Effect of Graphite on Rice Growth (흑연(GRAPHITE)의 벼 생육에 미치는 영향)

  • Hwang, Cher-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.2
    • /
    • pp.86-91
    • /
    • 2003
  • Carbon material such as graphite and activated charcoal can promote the growth of some formsog bacteria. We examined whether this bacterial growth promoting effect can have a positive influence on field crops. Refined graphite was mixed into the standard soil used in rice cultivation. Varying soil graphite mixtures of 0.1%, 0.5% and 1% were used to cultivate rice seedling for 3 weeks. After transplanting in the filed, rice plants were cultivated for 4 months. To observe the effect of graphite(carbon material) during the cultivation of rice, we examined various different growth components in this research. During the transplanting stage, growth promoting effect of carbon was observed in the 0.1% carbon added soil. However, there were not much difference between graphite added soil and standard soil in the other stages. Rice yield was highest in the soil with 0.1% graphite.

Biological Inoculant of Salt-Tolerant Bacteria for Plant Growth Stimulation under Different Saline Soil Conditions

  • Wang, Ru;Wang, Chen;Feng, Qing;Liou, Rey-May;Lin, Ying-Feng
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.398-407
    • /
    • 2021
  • Using salt-tolerant bacteria to protect plants from salt stress is a promising microbiological treatment strategy for saline-alkali soil improvement. Here, we conducted research on the growth-promoting effect of Brevibacterium frigoritolerans on wheat under salt stress, which has rarely been addressed before. The synergistic effect of B. frigoritolerans combined with representative salt-tolerant bacteria Bacillus velezensis and Bacillus thuringiensis to promote the development of wheat under salt stress was also further studied. Our approach involved two steps: investigation of the plant growth-promoting traits of each strain at six salt stress levels (0, 2, 4, 6, 8, and 10%); examination of the effects of the strains (single or in combination) inoculated on wheat in different salt stress conditions (0, 50, 100, 200, 300, and 400 mM). The experiment of plant growth-promoting traits indicated that among three strains, B. frigoritolerans had the most potential for promoting wheat parameters. In single-strain inoculation, B. frigoritolerans showed the best performance of plant growth promotion. Moreover, a pot experiment proved that the plant growth-promoting potential of co-inoculation with three strains on wheat is better than single-strain inoculation under salt stress condition. Up to now, this is the first report suggesting that B. frigoritolerans has the potential to promote wheat growth under salt stress, especially combined with B. velezensis and B. thuringiensis.

Effect of Inoculation of Azospirillum brasilense and Methylobacterium oryzae on the Growth of Red Pepper Plant (고추의 생장에 미치는 Azospirillum brasilense 및 Methylobacterium oryzae 접종 효과)

  • Kim, Byoung-Ho;Sa, Tong-Min;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.223-228
    • /
    • 2011
  • BACKGROUND: Rhizosphere bacteria may improve plant growth and productivity both by supply nutrients and hormonal stimulation. Although many experiments have shown improvements in plant growth with inoculation of bacterial cultures to the rhizosphere, the main obstacle in the applications of plant growth promoting rhizobacteria in a large scale is the inconsistency of the results. We tested the growth promoting effects of Azospirillum and Methylobacterium strains on red pepper plant. METHODS AND RESULTS: Red pepper seedlings were grown for 25 days in a growth media inoculated with A. brasilense CW903 or M. oryzae CBMB20. The seedlings were transplanted and grown for 45 days in pots with soil in a greenhouse, at half the recommended level of fertilizer. Bacterial culture, $4.0{\times}10^9$ for A. brasilense CW903 and $5.8{\times}10^8$ CFU for M. oryzae CBMB20, was applied in root zone soil periodically every 10 days during the experiment. Inoculation of M. oryzae CBMB20 significantly increased the red pepper plant growth in terms of leaf number, height and mass of shoot, or root mass compared to uninoculated control plants. Although beneficial effects of A. brasilense on plant growth of many crops were observed, the growthpromoting effect of A. brasilense CW903 on red pepper plant was not found in this study. CONCLUSION(s): The factors responsible for the irregularities in plant growth promoting of rhizobacteria are difficult to elucidate. Extensive inoculation experiments in the greenhouse and in the field should enable us to define the factors critical to obtain successful application of plant growth promoting rhizobacteria.

Studies on the effect of Sophora flavescens extract on the hair growth stimulation and acne inhibition (苦蔘抽出物이 毛髮成長 促進 및 面疱 抑制에 미치는 영향)

  • Roh, Hyun-Chan;Roh, Seok-Sun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.15 no.1
    • /
    • pp.96-126
    • /
    • 2002
  • In the course of screening natural extracts for hair growth, we found that the extract of dried root of Sophora flavescens has the prominent hair growth promoting effect. After topical application of Sophora flavescens extract to the back of C57BL/6 mice, the earlier conversion of telogen-to-anagen phase was induced. In addition, the Sophora flavescens extract revealed to possess potent inhibitory effect on $5{\alpha}$-reductase Ⅰ and Ⅱ activity. The growth of dermal papilla cells and mouse vibrissae hair follicle cultured in vitro, however, was not affected by Sophora flavescens extract treatment. RT-PCR analysis showed that Sophora flavescens extract induced mRNA levels of growth factors such as insulin-like growth factor-Ⅰ and keratinocyte growth factor in dermal papilla cells, suggesting hair growth promoting effect of Sophora flavescens extract is mediated through inhibition of $5{\alpha}$-reductase type Ⅱ activity and the regulation of growth factors in dermal papilla cells. Furthermore, Sophora flavescens extract also showed anti-bacterial effect on Propionibacterium acnes. These results suggest that Sophora flavescens can be used as a potent treatment agent for helping hair growth stimulation and acne inhibition.

  • PDF

Properties of BE0623 to serve as a growth factor of Bifidobacterium

  • Cho, Young Hoon;Sim, Jae Young;Nam, Myoung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.445-457
    • /
    • 2020
  • Prebiotics are defined as "Nondigestible food ingredients that beneficially affect the host by selectively stimulating the growth and activity of bacteria in the intestine" and as defined improve host health. This study was carried out to investigate the effects of bifidobacteria (Bifidobacterium lactis BB12 and Bifidobacterium longum BB536) growth enhancer (BE0623) supplement as a prebiotic. The addition of BE0623, a growth promoting material for bifidobacteria, significantly increased bifidobacteria viable cells counts in fermented milk by about 45 to 75 times compared to the non-added control group. In addition, microscopic observation showed a significant effect on proliferation of bifidobacteria in fermented milk with added BE0623. The viable cell counts in bifidobacteria also increased roughly 102-fold compared to the control group (non-added BE0623) and was higher than that of commercial growth promoters. Each fraction obtained though the purification of BE0623 influenced the increase of bifidobacteria growth. Culturing bifidobacteria with a combination of fractions of BE0623 had a synergistic effect compared to culturing bifidobacteria with each fraction individually. When any of the fractions were not added, the effect of the growth enhancer on bifidobacteria was reduced. These results indicate that all fractions contain substances that promote the growth of bifidobacteria. Therefore, BE0623 is considered to be available as a growth promoting material for bifidobacterium.

Plant Growth Promotion in Soil by Some Inoculated Microorganisms

  • Jeon, Jong-Soo;Lee, Sang-Soo;Kim, Hyoun-Young;Ahn, Tae-Seok;Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.271-276
    • /
    • 2003
  • The inoculation of some microorganisms into a microcosm containing soil from a barren lakeside area at Lake Paro in Kangwon-do enhanced plant growth significantly. The direct and viable counts of soil bacteria and soil microbial activities measured by electron transport system assay and fluorescein diacetate hydrolysis assay were higher in inoculated soil. The plant growth promoting effect of this inoculation may be caused by phytohormone production and the solubilization of insoluble phosphates by the inoculated bacteria. Three inoculated strains of Pseudomonas fluorescens produced several plant growth promoting phytohormones, including indole-3-acetic acid (auxin), which was confirmed by thin layer chromatography and GC/MS. P. fluorescens strain B16 and M45 produced 502.4 and 206.1 mg/l of soluble phosphate from Ca3(PO4)2 and hydroxyapatite, respectively. Bacillus megaterium showed similar solubilization rates of insoluble phosphates to those of Pseudomonas spp. We believe that this plant growth promoting capability may be used for the rapid revegetation of barren or disturbed land.