• 제목/요약/키워드: Growth-inhibitor

검색결과 1,018건 처리시간 0.023초

Plasminogen Activator Inhibitor-1 Antisense Oligodeoxynucleotides Abrogate Mesangial Fibronectin Accumulation

  • Park, Je-Hyun;Seo, Ji-Yeon;Ha, Hun-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권6호
    • /
    • pp.385-390
    • /
    • 2010
  • Excessive extracellular matrix (ECM) accumulation is the main feature of chronic renal disease including diabetic nephropathy. Plasminogen activator inhibitor (PAI)-1 is known to play an important role in renal ECM accumulation in part through suppression of plasmin generation and matrix metalloproteinase (MMP) activation. The present study examined the effect of PAI-1 antisense oligodeoxynucleotide (ODN) on fibronectin upregulation and plasmin/MMP suppression in primary mesangial cells cultured under high glucose (HG) or transforming growth factor (TGF)-${\beta}1$, major mediators of diabetic renal ECM accumulation. Growth arrested and synchronized rat primary mesangial cells were transfected with $1\;{\mu}M$ phosphorothioate-modified antisense or control mis-match ODN for 24 hours with cationic liposome and then stimulated with 30 mM D-glucose or 2 ng/ml TGF-${\beta}1$. PAl-1 or fibronectin protein was measured by Western blot analysis. Plasmin activity was determined using a synthetic fluorometric plasmin substrate and MMP-2 activity analyzed using zymography. HG and TGF-${\beta}1$ significantly increased PAI-1 and fibronectin protein expression as well as decreased plasmin and MMP-2 activity. Transient transfection of mesangial cells with PAI-1 antisense ODN, but not mis-match ODN, effectively reversed basal as well as HG- and TGF-${\beta}1$-induced suppression of plasmin and MMP-2 activity. Both basal and upregulated fibronectin secretion were also inhibited by PAI-1 antisense ODN. These data confirm that PAI-1 plays an important role in ECM accumulation in diabetic mesangium through suppression of protease activity and suggest that PAI-1 antisense ODN would be an effective therapeutic strategy for prevention of renal fibrosis including diabetic nephropathy.

The GSK-$3{\beta}$/Cyclin D1 Pathway is Involved in the Resistance of Oral Cancer Cells to the EGFR Tyrosine Kinase Inhibitor ZD1839

  • Jeon, Nam Kyeong;Kim, Jin;Lee, Eun Ju
    • 대한의생명과학회지
    • /
    • 제20권2호
    • /
    • pp.85-95
    • /
    • 2014
  • Activation of the epidermal growth factor receptor (EGFR) and downstream signaling pathways have been implicated in causing resistance to EGFR-targeted therapy in solid tumors, including the head and neck tumors. To investigate the mechanism of antiproliferation to EGFR inhibition in oral cancer, we compared EGFR tyrosine kinase inhibitor (Gefitinib, Iressa, ZD1839) with respect to its inhibitory effects on three kinases situated downstream of EGFR: MAPK, Akt, and glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$). We have demonstrated that ZD1839 induces growth arrest and apotosis in oral cancer cell lines by independent of EGFR-mediated signaling. An exposure of oral cancer cells to ZD1839 resulted in a dose dependent up-regulation of the cyclin-dependent kinase inhibitor p21 and p27, down regulation of cyclin D1, inactivation of GSK-$3{\beta}$ and of active MAPK. In resistant cells, GSK-$3{\beta}$ is constitutively active and its activity is negatively regulated primarily through Ser 9 phosphorylation and further enhanced by Tyr216 phosphorylation. These results showed that the resistance to the antiproliferative effects of ZD1839, in vitro was associated with uncoupling between EGFR and MAPK inhibition, and that GSK-$3{\beta}$ activation and degradation of its target cyclin D1 were indicators of high cell sensitivity to ZD1839. In conclusion, our data show that the uncoupling of EGFR with mitogenic pathways can cause resistance to EGFR inhibition in oral cancer.

Independent Inheritance between df2 gene and ti gene in Soybean

  • Han, Eun-Hui;Sung, Mi-Kyung;Kim, Kyung-Roc;Park, Jung-Soo;Nam, Jin-Woo;Chung, Jong-Il
    • 한국작물학회지
    • /
    • 제56권1호
    • /
    • pp.14-17
    • /
    • 2011
  • Dwarfuess and Kunitz trypsin inhibitor (KTI) protein in soybean is useful traits for basic studies. df2 and ti gene control dwarfness and the expression of Kunitz trypsin inhibitor (KTI) protein in soybean, respectively. The objective of this research was to verify genetic linkage or independent inheritance of df2 and ti loci in soybean. The $F_2$ population was made by cross combination between "Gaechuck#2" (Df2Df2titi genotype, KTI protein absence and a normal growth type) and T210 (df2df2TiTi genotype, a dwarf growth type and KTI protein present). A total of 258 $F_2$ seeds were analyzed for the segregation of KTI protein using SDS-PAGE. And so, 198 $F_2$ plants were recorded for the segregation of dwarfness. The segregation ratio of 3 : 1 for Ti locus (201 Ti_ : 57 titi) and Df2 locus (143 Df2_ : 55 df2df2) was observed. Segregation ratio of 9 : 3 : 3 : 1 (116 Ti_Df2_: 44 Ti_df2df2: 27 titiDf2_: 11 titidf2df2) between df2 gene and ti gene was observed ($x^2$=3.53, P = 0.223). These results showed that df2 gene was inherited independently with the ti gene in soybean.

Activity of Crude Extract of Rubus crataegifolius Roots as a Potent Apoptosis Inducer and DNA Topoisomerase I Inhibitor

  • Lee, Ji-Hyeon;Ham, Yoon-Ah;Choi, Sang-Ho;Im, Eun-Ok;Jung, Jee-H;Im, Kwang-Sik;Kim, Dong-Kyoo;Ying-Xu;Wang, Min-Wei;Kim, Nam-Deuk
    • Archives of Pharmacal Research
    • /
    • 제23권4호
    • /
    • pp.338-343
    • /
    • 2000
  • The effects of methanol extract of Rubus crategifolius roots and its solvent fractions were investigated on the proliferation of MCF-7 human breast carcinoma cells. The methanol extract inhibited the proliferation of MCF-7 cells in a concentration dependent manner. Moreover, their methanol soluble (W-M) fraction had the greatest inhibitory effect on the growth of MCF-7 cells. To evaluate whether the W-M fraction affects on the cell cycle of MCF-7 cells, cells treated with this fraction were analyzed with flow cytometry. The W-M fraction increased $G_0$/$G_1$phase after 24 h-treatment and induced apoptosis after 48 h-treatment. The hallmark of apoptosis, DNA fragmentation, also appeared by W-M fraction after 48 h-treatment. Furthermore, the methanol extract and its W-M fraction inhibited the activity of the topoisomerase 1 enzyme in the relaxation assay, From these results, their W-M fraction as well as methanol extract of R. crategifolius roots are necessary for further studies as a potent inhibitor of the growth of cancer cells.

  • PDF

Cyclin-Dependent Kinase Inhibitor 2A is a Key Regulator of Cell Cycle Arrest and Senescence in Endothelial Colony-Forming Cells in Moyamoya Disease

  • Seung Ah Choi;Youn Joo Moon;Eun Jung Koh;Ji Hoon Phi;Ji Yeoun Lee;Kyung Hyun Kim;Seung-Ki Kim
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권6호
    • /
    • pp.642-651
    • /
    • 2023
  • Objective : Endothelial colony-forming cells (ECFCs) have been reported to play an important role in the pathogenesis of moyamoya disease (MMD). We have previously observed stagnant growth in MMD ECFCs with functional impairment of tubule formation. We aimed to verify the key regulators and related signaling pathways involved in the functional defects of MMD ECFCs. Methods : ECFCs were cultured from peripheral blood mononuclear cells of healthy volunteers (normal) and MMD patients. Low-density lipoproteins uptake, flow cytometry, high content screening, senescence-associated β-galactosidase, immunofluorescence, cell cycle, tubule formation, microarray, real-time quantitative polymerase chain reaction, small interfering RNA transfection, and western blot analyses were performed. Results : The acquisition of cells that can be cultured for a long time with the characteristics of late ECFCs was significantly lower in the MMD patients than the normal. Importantly, the MMD ECFCs showed decreased cellular proliferation with G1 cell cycle arrest and cellular senescence compared to the normal ECFCs. A pathway enrichment analysis demonstrated that the cell cycle pathway was the major enriched pathway, which is consistent with the results of the functional analysis of ECFCs. Among the genes associated with the cell cycle, cyclin-dependent kinase inhibitor 2A (CDKN2A) showed the highest expression in MMD ECFCs. Knockdown of CDKN2A in MMD ECFCs enhanced proliferation by reducing G1 cell cycle arrest and inhibiting senescence through the regulation of CDK4 and phospho retinoblastoma protein. Conclusion : Our study suggests that CDKN2A plays an important role in the growth retardation of MMD ECFCs by inducing cell cycle arrest and senescence.

인진청간탕(茵蔯淸肝湯)이 간성상세포의 세포성장과 사멸에 미치는 영향 (The effects of Injinchunggan-tang on Cell Growth and Apoptosis in Human Hepatic Stellate Cell Line LX2)

  • 김상주;우홍정
    • 대한한방내과학회지
    • /
    • 제32권4호
    • /
    • pp.519-529
    • /
    • 2011
  • Objectives : This study was performed to investigate the effects of Injinchunggan-tang on cell growth and apoptosis in human hepatic stellate cell line LX2. Materials and Methods : Hepatic stellate cells were treated with various concentrations of Injinchunggan-tang extract for 24, 48 and 72 hours. The extraction was done with distilled water. After the treatment, cell viability, proliferation, apoptosis, caspase activity, caspase inhibitor and the mRNA of the Bcl-2, and Bax with ${\beta}$-actin were measured by using MTT assay, apoptosis assay and RT-PCR. Results : Proliferation, and mRNA expression of the hepatic stellate cells were inhibited by Injinchunggan-tang treatment in a dose-dependent manner. This indicates the prescription has inhibitory effect on fibrogenesis of the liver by regulating the fibrogenesis-associated genes in transcription. Cell viability was inhibited in time- and dose-dependent manners. Conclusions : These results suggest that Injinchunggan-tang would be beneficial in the treatment of cirrhotic patients as well as for the patients with chronic hepatitis.

Sp1 Decoy Oligodeoxynucleotides에 의한 사구체 혈관간세포 증식억제 효과 (Sp1 Decoy Oligodeoxynucleotides Inhibit Serum-induced Mesangial Cell Proliferation)

  • 채영미;김성영;박관규;장영제
    • KSBB Journal
    • /
    • 제19권5호
    • /
    • pp.335-340
    • /
    • 2004
  • Mesangial expansion caused by cell proliferation and glomerular extracellular matrix accumulation is one of the earliest renal abnormalties observed at the onset of hyperglycemia in diabetes mellitus. Transcription factor Sp1 is implicated in the transcriptional regulation of a wide range of genes participating in cell proliferation, and is assumed to play an essential role in mesangial expansion, transforming growth factor (TGF)-$\beta$1, plasminogen activator inhibitor (PAI)-1. We have generated a phosphorothioated double-stranded Sp1-decoy oligodeoxynucleotide that effectively blocks Sp1 binding to the promoter region for transcriptional regulation of TGF-$\beta$1 and PAI-1. The Sp1 decoy oligodeoxynucleotide suppressed transcription of these cytokines and proliferation of primary rat mesangial cells in response to serum stimulation. These results suggest that the Sp1 decoy oligodeoxynucleotide could bea powerful tool in preventing the pathogenesis of renal hypertrophy.

토착 미생물을 이용한 MTBE와 BTEX의 혐기성 생분해 연구 (A Study on Anaerobic Biodegradation of MTBE and BTEX by Indigenous Microorganisms)

  • 정우진;장순웅
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권3호
    • /
    • pp.88-94
    • /
    • 2016
  • The simultaneous biodegradation between MTBE (Gasoline additives) and BTEX (Benzene, Toluene, Ethyl-benzene, o-Xylene, m-Xylene, p-Xylene) was achieved within a competitive inter-relationship, with not only electron accepters such as nitrate, sulfate, and iron(III) without oxygen, but also with electron donors such as MTBE and BTEX. Preexisting indigenous microorganisms from a domestic sample of gasoline contaminated soil was used for a lab-scale batch test. The result of the test showed that the biodegradation rate of MTBE decreased when there was co-existing MTBE and BTEX, compared to having just MTBE present. The growth of indigenous microorganisms was not affected in the case of the MTBE treatment, whereas the growth of the microorganisms was decreased in combined MTBE and BTEX sample. This may indicate that an inhibitor related to biodegradation when BTEX and MTBE are mixed will be found. This inhibitor may be found to retard the anaerobic conditions needed for efficient breakdown of these complex carbon chain molecules in-situ. Moreover, it is also possible that an unknown competitive reaction is being imposed on the interactions between MTBE and BTEX dependent on conditions, ratios of mixture, etc.

Mechanism of P-glycoprotein Expression in the SGC7901 Human Gastric Adenocarcinoma Cell Line Induced by Cyclooxygenase-2

  • Gu, Kang-Sheng;Chen, Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2379-2383
    • /
    • 2012
  • Objective: To investigate possible signal pathway involvement in multi-drug resistant P-glycoprotein (P-gp) expression induced by cyclooxygenase-2 (COX-2) in a human gastric adenocarcinoma cell line stimulated with pacliaxel (TAX). Methods: The effects of TAX on SGC7901 cell growth with different doses was assessed by MTT assay, along with the effects of the COX-2 selective inhibitor NS-398 and the nuclear factor-KB (NF-KB) pathway inhibitor pyrrolidine dithiocarbamate (PDTC). Influence on COX-2, NF-KB p65 and P-gp expression was determined by Western blotting. Results: TAX, NS-398 and PDTC all reduced SGC7901 growth, with dosedependence. With increasing dose of TAX, the expression of COX-2, p65 and P-gp showed rising trends, this being reversed by NS-398. PDTC also caused decrease in expression of p65 and P-gp over time. Conclusion: COX-2 may induce the expression of P-gp in SGC7901 cell line via the NF-kappa B pathway with pacliaxel stimulation.

Characteristics of Purinergic Receptor Expressed in Human Retinoblastoma Cells

  • ;공인덕
    • 대한의생명과학회지
    • /
    • 제13권4호
    • /
    • pp.333-339
    • /
    • 2007
  • Recently, much attention has been paid to human retinoblastoma since it provide a good model system for studying mechanisms underlying cell growth, differentiation, proliferation, and apoptosis, and for developing cancer therapy. However, until now it is unclear whether purinergic receptors are involved in the calcium mobilization in the retinoblastoma cells. In this regard, we measured possible purinergic signaling in WERI-Rb-1 cells using $Ca^{2+}$ imaging technique and RT-PCR method. ATP-induced $[Ca^{2+}]_i$ transients was maintained to about $90.7{\pm}1.0%$ of the control (n=48) even in the absence of extracellular calcium. The ATP-induced intracellular calcium response was only attained to $10.4{\pm}1.8%$ (n=55) of peak amplitude of the control after preincubation of 1 ${\mu}MU-73122$, a PLC inhibitor, but it was not affected by 1 ${\mu}MU-73343$, a inactive form of U-73122. And also ATP-induced $[Ca^{2+}]_i$ rise was almost attenuated by 20 ${\mu}M$ 2-APB, a putative $IP_3$ receptor inhibitor. Two subtypes of $IP_3$ receptor $(IP_{3-1}R,\;IP_{3-2}R)$ were identified by a RT-PCR method. These findings suggest that purinergic stimuli can cause calcium mobilization via $PLC-IP_3$ pathway after the activation of P2Y receptors in the retinoblastoma cells, which may play important roles in cell proliferation, differentiation, growth, and cell death.

  • PDF