• Title/Summary/Keyword: Growth temperature reduction

Search Result 395, Processing Time 0.041 seconds

Effect of Active Nutrient Uptake on Heading Under Low Temperature in Rice

  • Hwang, Woon-Ha;Kang, Jea Ran;Baek, Jung-Sun;An, Sung-Hyun;Jeong, Jae-Heok;Jeong, Han-Yong;Lee, Hyen-Seok;Yun, Jong-Tak;Lee, Gun-Hwi;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.3
    • /
    • pp.163-170
    • /
    • 2016
  • Heading time is important element for yield and quality in crops. Among day length and temperature which influence on heading, temperature effect has not been investigated well. To investigate temperature effect on heading, heading date and plant growth characters were checked under the low and high temperature conditions in short day length. Analyzing heading date of six Korean varieties under the high and low temperature condition, heading date of varieties were delayed under low temperature. In the low temperature condition, dry weight and area of leaf were reduced. Varieties showing more delay of heading under low temperature also showed more reduction in leaf area. After selecting three varieties showing significant difference in leaf growth and heading date under different temperature conditions, nutrient contents of plant were analyzed. Nitrogen content was reduced in leaf and shoot under the low temperature condition. OsNRT2.3, nitrate transporter, was significantly down regulated in varieties showing more heading delay. Available phosphate content was decreased in leaf, but increased in shoot due to reduction of phosphate mobility. OsPT1, phosphate transporter regulating phosphate uptake, was more down regulated in varieties showing more heading delay. OsPT6, phosphate transporter regulating phosphate transport in plant, was also significantly down regulated in those varieties. With these data, we expected that active nitrogen and available phosphate uptake and transport in plant would increase leaf growth then might reduce heading delay under the low temperature condition.

RESEARCH OF WELDING EFFECT ON STRUCTURAL INTEGRITY AT HIGH TEMPERATURE

  • Tu, Shan-Tung;Yoon, Kee-Bong
    • Proceedings of the KWS Conference
    • /
    • 1998.10a
    • /
    • pp.11-24
    • /
    • 1998
  • The invention of fusion wilding technology has brought on a revolutionary change in manufacturing industry which enables the construction of large scale high temperature plants in chemical, petrochemical and power generation industries. However, among the failure cases of high temperature components, premature failures of weldments have taken a large percentage that indicates the detrimental effect of welding on structural integrity. The accurate prediction of the high temperature behaviour of welded components is thus becoming increasingly important in order to realise an optimised design and maintenance of a plant life. In the present paper, recent research activities on high temperature behaviour of welded structures are briefly summarised. A local deformation measuring technique is proposed to determine the creep properties of weldment constituents. A damage mechanics approach is introduced to study the life reduction and ductility reduction due to the presence of a weld in high temperature structures. Finally, the high temperature creep crack growth in weldments is discussed.

  • PDF

Effects of Austenitization Temperature and Hot Deformation on Microstructure of Microalloyed Low Carbon Steels (저탄소 미량합금강의 미세조직에 미치는 고온변형의 효과)

  • Kim, Sea-Arm;Lee, Sang Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.2
    • /
    • pp.83-89
    • /
    • 2003
  • As a research for developing fine-grained high strength low carbon steels, the effects of austenitization temperature and hot deformation on microstructure was investigated in 0.15 wt.% carbon steels with microalloying elements such as Nb and Ti. When the steels were reheated at $1250^{\circ}C$, Nb containing steel showed very coarse austenite grain size of $200{\mu}m$ whereas Nb-Ti steel did fine one of $70{\mu}m$ because Ti carbonitrides could suppress the austenite grain growth. In case of 50% reduction at $850^{\circ}C$, the austenite grains in the Nb steel partially recrystallized while those in the Nb-Ti steel fully recrystallized probably due to finer prior austenite grains.For the Nb-Ti steel, ferrite grain size was not sensitively changed with austenitization temperature and compression strain and, severe deformation of 80% reduction was not essentially necessary to refine ferrite grains to about $3{\mu}m$ which could be obtained through lighter deformation of 40% reduction.

Low Temperature Nanopowder Processing for Flexible CIGS Solar Cells (플렉시블 CIGS 태양전지 제조를 위한 저온 나노입자공정)

  • Park, Chinho;Farva, Umme;Krishnan, Rangarajan;Park, Jun Young;Anderson, Timothy J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.61.1-61.1
    • /
    • 2010
  • $CuIn_{1-x}-GaxSe_2$ based materials with direct bandgap and high absorption coefficient are promising materials for high efficiency hetero-junction solar cells. CIGS champion cell efficiency(19.9%, AM1.5G) is very close to polycrystalline silicon(20.3%, AM1.5G). A reduction in the price of CIGS module is required for competing with well matured silicon technology. Price reduction can be achieved by decreasing the manufacturing cost and by increasing module efficiency. Manufacturing cost is mostly dominated by capital cost. Device properties of CIGS are strongly dependent on doping, defect chemistry and structure which in turn are dependent on growth conditions. The complex chemistry of CIGS is not fully understood to optimize and scale processes. Control of the absorber grain size, structural quality, texture, composition profile in the growth direction is important to achieving reliable device performance. In the present work, CIS nanoparticles were prepared by a simple wet chemical synthesis method and their structural and optical properties were investigated. XRD patterns of as-grown nanopowders indicate CIS(Cubic), $CuSe_2$(orthorhombic) and excess selenium. Further, as-grown and annealed nanopowders were characterized by HRTEM and ICP-OES. Grain growth of the nanopowders was followed as a function of temperature using HT-XRD with overpressure of selenium. It was found that significant grain growth occurred between $300-400^{\circ}C$ accompanied by formation of ${\beta}-Cu_{2-x}Se$ at high temperature($500^{\circ}C$) consistent with Cu-Se phase diagram. The result suggests that grain growth follows VLS mechanism which would be very useful for low temperature, high quality and economic processing of CIGS based solar cells.

  • PDF

Synthesis of Nano Metal Powder by Electrochemical Reduction of Iron Oxides

  • Seong, Ki-Hun;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.482-483
    • /
    • 2006
  • Synthesis of iron nanopowder by room-temperature electrochemical reduction process of ${\alpha}-Fe_2O_3$ nanopowder was investigated in terms of phase evolution and microstructure. As process variables, reduction time and applied voltage were changed in the range of $1{\sim}20$ h and $30{\sim}40$ V, respectively. From XRD analyses, it was found that volume of Fe phase increased with increasing reduction time and applied voltage, respectively. The crystallite size of Fe phase in all powder samples was less than 30 nm, implying that particle growth was inhibited by the reaction at room temperature. Based on the distinct equilibrium shape of crystalline particle, phase composition of nanoparticles was identified by TEM observation.

  • PDF

Influence of Room Temperature and Strain Aging on the COD for a Small Fatigue Crack (室溫時效 및 變形時效가 微小 疲勞크랙의 開口變位에 미치는 影響)

  • 김민건
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.402-407
    • /
    • 1995
  • The effects of room temperature and strain aging treatment are discussed on the critical condition for the onset of growth of non-propagating cracks on 0.15% C low carbon steel, with special emphasis on the length of the critical non-propagating crack and on the crack opening displacement(COD) at the crack tip. It is found from the experimental analysis that room temperature and strain aging of a fatigue pre-cracked specimen introduced the closure of a crack tip of the pre-crack and the reduction of crack opening displacement at the wake of crack, together with an improvement in crack growth resistance of the microstructure. This may cause an increase in the endurance limit of the specimen, through the enhancement of effective stress for the onset of growth of the critical non-propagating crack.

Effect of Mist Treatment on the Growth and Quality of Cut Rose 'Hanmaum' during Summer (여름철 미스트 처리가 절화 장미 '한마음'의 생육과 품질에 미치는 영향)

  • Chon, Young Shin;Ha, Su Hyeon;Jeong, Kyeong Jin;Choi, Kyoung Ok;Yun, Jae Gill
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.538-543
    • /
    • 2013
  • During summer in Korea, the excessively high temperature causes growth retardation and quality reduction in cut roses grown in greenhouse. Mist treatments were conducted to reduce the temperature and avoid quality reduction of cut roses. The temperature change in the greenhouse, growth and quality of cut roses, and injuries caused by insects or fungi were investigated during mist treatment. Daily maximum temperature reduced as the number of mist treatment increased, resulting in $6^{\circ}C$ reduction by mist treatment for 10 seconds at 5 min interval. This temperature reduction occurred only when maximum temperature was over $40^{\circ}C$ in greenhouse, and not when it was less than $40^{\circ}C$ or rainy and/or cloudy day. Plant height and fresh weight of the cut roses were increased at the range of 10-20% by mist treatment. As frequency of mist treatment increased, however, malformed flowers increased and vase life of cut rose was largely shortened. The injuries by insects like as beet armyworm larvae and scale insect increased as well. In conclusion, it is recommended that mist treatment must be used when the daily maximum temperature in a green house is over $40^{\circ}C$ and forecasting for disease or insects should be conducted as well.

Characterization of Multiphase in $Fe_2O_3$ Thin Film by PECVD

  • Kim, Bum-Jin;Lee, Eun-Tae;Jang, Gun-Eik;Chung, Yong-Sun
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.79-85
    • /
    • 1997
  • Fe$_2$O$_3$ thin films were prepared on $Al_2$O$_3$ substrate by PECVD(Plasma-Enhanced Chemical Vapor Deposition) process. The phase transformation of iron oxide film was determined as the substrate temperature and reduction-oxidation process. $\alpha$-Fe$_2$O$_3$ was stable in deposition temperature ranges of 80~15$0^{\circ}C$. Fe$_3$O$_4$ phase was obtained by the reduction process of $\alpha$-Fe$_2$O$_3$ phase in H$_2$ ambient. Fe$_3$O$_4$ phase was transformed into a ${\gamma}$-Fe$_2$O$_3$ thin film under controlled oxidation conditions at 280~30$0^{\circ}C$.

  • PDF

Crystal Growth of Superconducting $YBa_2Cu_3O_{7-x}$ Single Crystals ($YBa_2Cu_3O_{7-x}$초전도 단결정 성장)

  • 정광철;오근호;최종건
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.536-542
    • /
    • 1990
  • Single crystals of YBa2Cu3O7-x have been grown in BaCuO2 flux at temperature of 125$0^{\circ}C$ and examined using XRD, EDAX and light microscopy. The YBCO crystals were grown in a cavity which was formed by the reduction of CuO and became large by the directional solidification in the crucible. The observed crystal growth habit is square planar with the c-axis normal to the plane. The surface morphology of grown crystals were growth ledges and growth sprial paterns on a (001) face.

  • PDF

Growth and Quality Characteristics in Response to Elevated Temperature during the Growing Season of Korean Bread Wheat

  • Chuloh Cho;Han-Yong Jeong;Yulim Kim;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Ji-Young Shon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.124-124
    • /
    • 2022
  • Wheat (Triticum aestivum L.) is the major staple foods and is in increasing demand in the world. The elevated temperature due to changes in climate and environmental conditions is a major factor affecting wheat development and grain quality. The optimal temperature range for winter wheat is between 15~25℃, it is necessary to study the physiological characteristic of wheat according to the elevated temperature. This study presents the effect of elevated temperature on the yield and quality of two Korean bread wheat (Baekkang and Jokyoung) in a temperature gradient tunnel (TGT). Two bread wheat cultivars were grown in TGT at four different temperature conditions, i.e. TO control (near ambient temperature), T1 control+1℃, T2 control+2℃, T3 control+3℃. The period from sowing to heading stage has accelerated, while the growth properties including culm length, spike length and number of spike, have not changed by elevated temperature. On the contrary, the number of grains per spike and grain yield was reduced under T3 condition compared with that of control condition. In addition, the. The grain filling rate and grain maturity also accelerated by elevated temperature (T3). The elevating temperature has led to increasing protein and gluten contents, whereas causing reduction of total starch contents. These results are consistent with reduced expression of starch synthesis genes and increased gliadin synthesis or gluten metabolism genes during late grain filling period. Taken together, our results suggest that the elevated temperature (T3) leads to reduction in grain yield regulating number of grains/spike, whereas increasing the gluten content by regulating the expression of starch and gliadin-related genes or gluten metabolism process genes expression. Our results should be provide a useful physiological information for the heat stress response of wheat.

  • PDF