• Title/Summary/Keyword: Growth stage

Search Result 4,420, Processing Time 0.031 seconds

An Effect of Temperature on the Fatigue Crack Propagation Behavior of Spring Steel for Vehicle (차량용 스프링강의 피로거동에 미치는 온도의 영향)

  • 박경동;류찬욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.83-90
    • /
    • 2004
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature and low temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$,$-100^{\circ}C$, and $-150^{\circ}C$, in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I)was increased but stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to decrease temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerably higher than that of room temperature in the early stage and stable of fatigue crack growth region.

An Evaluation on the Fatigue Strength Characteristics for the Shot Peening Spring Steel at Low Temperature (숏피닝 가공재의 저온 피로 강도 평가)

  • 박경동;권오헌
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, CT specimens were prepared from spring steel(SPS5) processed shot peening. The fatigue crack growth tests were carried out in the environment of the room temperature md low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$ $-100^{\circ}C$ and $-150^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth (Region II) were decreased in proportion to descend temperature. It was shown that the fatigue resistance characteristics and fracture strength at low temperature are considerable higher than those of mom temperature in the early stage and stable of fatigue crack growth region.

A Study on Fatigue Crack Growth Model Considering High Mean Loading Effects Based on Structural Stress (고평균하중을 고려한 구조응력 기반의 피로균열성장 모델에 관한 연구)

  • Kim, Jong-Sung;Kim, Cheol;Jin, Tae-Eun;Dong, P.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.220-225
    • /
    • 2004
  • The mesh-insensitive structural stress procedure by Dong is modified to apply to the welded joints with local thickness variation and inignorable shear/normal stresses along local discontinuity surface. In order to make use of the structural stress based K solution for fatigue correlation of welded joints, a proper crack growth model needs to be developed. There exist some significant discrepancies in inferring the slope or crack growth exponent in the conventional Paris law regime. Two-stage crack growth model was not considered since its applications are focused upon the fatigue behavior in welded joints in which the load ratio effects are considered negligible. In this paper, a two-stage crack growth law considering high mean loading is proposed and proven to be effective in unifying the so-called anomalous short crack growth data.

  • PDF

Formation and Differentiation of Human Fetal Ovarian Follicles (태아기 사람 난포의 형성과 분화)

  • 도병록;이창주;송강원;윤현수;노성일;윤용달
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.137-145
    • /
    • 2000
  • The regulatory mechanisms of the initiation and the formation of ovarian follicles during fetal stage of mammals are largely unknown. In addition to the gonadotropins secreted from pituitary, various growth factors, and steroid hormones are believed to be involved in the differentiation and initiation of growth of primordial follicles consisting of primordial germ cells migrated from yolk sac and streamed cells from mesonephric somatic cells. In human, primordial follicles that have already initiated differentiation at fetal stage undergo either folliculogenesis to ovulate or atresia after growth. Some of primordial follicles remain without growth for 50 years or longer. The objective of this paper is to review the mechanism of the formation, growth arrest, and initiation of primordial follicles in human fetal and neonatal ovaries.

  • PDF

A study on the growth behaviors of surface fatigue crack initiated from a small-surface defect of 2024-T3 and brass (2024-T3 및 황동의 작은 표면결함재의 피로균열 성장특성에 관한 연구)

  • 서창민;오명석
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.53-64
    • /
    • 1996
  • In this paper, rotating bending fatigue tests have been carried out to investigate the growth behabiors of surface fatigue crack initiated from a small artificial surface defect, that might exist in real structures, on 2024-T3 and 6:4 brass. The test results are analysed in the viewpoints of both strength of materials and fracture mechanics, it can be concluded as follows. The effect of a small artificial surface defect upon the fatigue strength is very large. The sensitivity of 2024-T3 on the defect is higher than that of 6:4 brass. The growth behavior of the surface fatigue crack of 2024-T3 is different from that of 6:4 brass. The growth rate of the surface fatigue crack of 2024-T3 is considerably rapid in the early stage of the fatigue life and apt to decrease in the later stage. It was impossible to establish a unifying approach in the analysis of crack growth begabior of 2024-T3 and 6:4 brass using the maximum stress intensity factor because of their dependence on stress level. But if the elastic strain and cyclic total strain intensity factor range were applied to obtain the growth rate of surface fatigue cracks of the materials, the data were found to be nearly coincided.

  • PDF

Creep Crack Growth Properties of Rotor Steel under Constant Load and $C_t$ Condition (일정하중 및 일정$C_t$에서 로터강의 크리프 균열전파특성)

  • Jeong, Soon-Uk;Lee, Hun-Sik;Kim, Young-Dae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.501-506
    • /
    • 2001
  • The creep crack growth properties in 3.5NiCrMoV steel were investigated at $550^{\circ}C$ by using CT specimen under constant $C_t$ condition that was held during crack growth of 1mm distance. $C_t$ lely on load line displacement rate and $C^*$ usually increase with crack length though load is reduced in order to maintain constant $C_t$ value as crack growth. Fully coalesced area(FCA) ahead of crack tip tend to increase as $C_t$ increase to the critical value, and after that value FCA decrease. For the tertiary creep stage of crack growth test, the most of displacement is due to the steady state creep, except only small part due to the primary creep and other effects. Therefore, tests were mainly interrupted in the tertiary stage to obtain high value of $C_t$. At constant load and $C_t$ region, crack growth slope was 0.900 and 0.844 each, on the other hand $C^*$ slope was 0.480.

  • PDF

A Study of Stress ratio on the Fatigue Crack Growth Characteristics of Pressure Vessel SA516 Street at Low Temperature (저온 압력용기용 SA516강의 응력비에 따른 피로크랙 전파특성에 관한 연구)

  • 박경동;하경준
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.220-223
    • /
    • 2001
  • In this study, CT specimens were prepared hem ASTM SA516 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, -l$0^{\circ}C$ and -l2$0^{\circ}C$ and in the range of stress ratio of 0.1, 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ΔK$_{th}$ in the early stage of fatigue crack growth ( Region I ) and stress intensity factor range ΔK in the stable of fatigue crack growth ( Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN - ΔK in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region H and the cryogenic-brittleness greatly affect a material with decreasing temperature.e.greatly affect a material with decreasing temperature.

  • PDF

Case Study on the Growth Factors of Young Technology Startups in the Cosmetics Industry: Focusing on the Six-month Challenge Platform project of Chungbuk Creation Economic Innovation Center (화장품산업 초기 기술창업기업의 성장요인에 관한 사례연구: 충북창조경제혁신센터 6개월챌린지플랫폼사업의 지원기업 중심으로)

  • Jeong, Do Youn;Om, Kiyong
    • Knowledge Management Research
    • /
    • v.20 no.2
    • /
    • pp.197-216
    • /
    • 2019
  • The Korean government has been focusing on supporting technology startups to solve social and economic problems such as low growth, declining economic growth rate, rising youth unemployment rate and lack of new growth engine. Although the failure rate of young technology startups is very high, relevant researches are still scant. On the basis of previous researches, this study has identified four growth factors of technology startups: characteristics of entrepreneurs, technical superiority and originality of business items, focused marketing strategy, and follow-up government support projects. Five young technology startup cases were selected and analyzed in the cosmetics industry which were supported by the Six-month Challenge Platform project of Chungbuk Creation Economic Innovation Center. The main findings of the case study were as follows: First, product development through inhouse R&D rather than external contracted R&D was beneficial to acquiring follow-up government support projects and external investment. Second, choosing a small niche market and concentrating marketing efforts on the target market had a positive effect on firm performance. And, third, relevance of entrepreneurs' college major and technological originality of business items were confirmed to influence firm performance positively in the early stage. The results are expected to help young technology startups survive successfully and establish a foothold for growth in their early stage.

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF

Effect of the Foliar Application of Amino Acid Mixture on the Growth of Melon Seedlings (아미노산 엽면 시비가 멜론 묘의 생육에 미치는 영향)

  • 김영식;김혜진
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.74-80
    • /
    • 2002
  • The effect of the foliar application of amino acid mixture on the growth of melon (Cucumis melo L.) seedlings was investigated. The amino acid treatments were initiated at the first (Ll) or second (L2) fully expanded leaf stage. The concentrations of amino acid mixture used were 0,10, 20, and 30 mg . L$^{-1}$ . At Ll stage, the fresh and dry weights of shoot were high in the amino acid treatments. Plant height was the highest in 30 mg . L$^{-1}$ at the third sampling of Ll. At L2 stage, shoot fresh weight was the greatest when the concentration of amino acid mixture was 30 mg.L$^{-1}$ at the third sampling. Plant height was the highest in 30 mg L$^{-1}$ at the second and third samplings. At the third sampling of Ll stage the amino acid mixture affected leaf length and leaf width of the first true leaf. At the third sampling of L2 stage leaf length was not significantly dirtferent between treatments, while leaf width was greater in amino acid treatments. At the second and third samplings of Ll stage the amino acid mixture had effect on leaf length and leaf width of the second true leafs which were not significantly different between treatments at L2 stage. Leaf length and leaf width of the third true leaf were affected by amino acid treatments. In conclusion, when the first true leaf expanded\ulcorner three foliar applications of 20-30 mg . L$^{-1}$ amino acid mixture can stimulate the growth of melon seedlings. If the amino acid mixture is sprayed at the second true leaf stage, two foliar applications of 30 mg . L$^{-1}$ amino acid mixture can improve the growth of melon seedlings.