• Title/Summary/Keyword: Growth mechanism

Search Result 2,449, Processing Time 0.032 seconds

THE EFFECT OF BMP REGULATED SMAD PROTEIN ON ALKALINE PHOSPHATASE GENE EXPRESSION (Smad에 의한 alkaline phosphatase 유전자의 발현 조절기전)

  • Kim, Nan-Jin;Ryoo, Hyun-Mo;Kim, Hyun-Jung;Kim, Young-Jin;Nam, Soon-Hyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.238-246
    • /
    • 2001
  • Bone morphogenetic proteins(BMPs), members of the transforming growth factor $\beta$(TGF-$\beta$) superfamily were first identified as the factors that induce ectopic bone formation in vivo, when implanted into muscular tissue. Especially BMP-2 inhibits terminal differentiation of C2C12 myoblasts and converts them into osteoblast lineage cells. In the molecular mechanism of the signal transduction of TGF-$\beta$ and related factors, intracellular signaling proteins were identified as Smad. In previous study, it has been reported that Smad 1 and Smad 5, which belong to the R-Smad family mediate BMP signaling, were involved in the induction of osteoblast differentiation in C2C12 cells. To understnad the role of Smads involved in osteogenic transdifferentiation in C2C12 cell, in present study, after we stably transfected C2C12 cells with each. Smad(Smad 1,Smad 5) expression vector, cultured for 3 days and stained for alkaline phophatase activity. ALP activity positive cells appeared in the Smad 1, Smad 5 stably transfected cell even in the abscence of BMP. After transiently co-transfected C2C12 cells with each Smad expression vector and ALP promoter, it was examined that Smad 1 and Smad 5 expression vector had increased about 2 fold ALP promoter activity in the abscence of BMP. These result suggested that both Smad 1 and Smad 5 were involved in the intracellular BMP signals which induce osteoblast differentiation in C2C12 cells. The effect of BMP on C2C12 cells with Smad 1, Smad 5 transfected were studied by using northern blot analysis. the treatment of BMP upregulated ALP mRNA level in three groups, especially upregulation of ALP was larger in Smad 1, Smad 5 transfected cell than control group. Pretreatment with cycloheximide($10{\mu}g/ml$), a protein synthesis inhibitor resulted in blocking the ALP gene expression even in BMP(100ng/ml) treated cell. These results suggested that Smad increased the level of ALP mRNA via the synthesis of a certain transcriptional regulatory protein.

  • PDF

Purification of Human HtrA1 Expressed in E. coli and Characterization of Its Serine Protease Activity (E. coli에서 발현된 human HtrA1 단백질의 정제와 HtrA1의 serine protease 활성 조건에 관한 연구)

  • Kim, Kyung-Hee;Kim, Sang-Soo;Kim, Goo-Young;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1133-1140
    • /
    • 2006
  • Human HtrA1 (High temperature requirement protein A1) is a homologue of the E. coli periplasmic serine protease HtrA. A recent study has demonstrated that HtrA1 is a serine protease involved in processing of insulin like growth factor binding protein (ICFBP), indicating that it serves as an important regulator of IGF activity. Additionally, several lines of evidence suggest a striking correlation between proteolytic activity of HtrA1 serine protease and the pathogenesis of several diseases; however, physiological roles of HtrA1 remain to be elucidated. We used the pGEX bacterial expression system to develop a simple and rapid method for purifying HtrA1, and the recombinant HtrA1 protein was utilized to investigate the optimal conditions in executing its proteolytic activity. The proteolytically active HtrA1 was purified to approximately 85% purity, although the yield of the recombinant HtrA1 protein was slightly low $460{\mu}g$ for 1 liter E. coli culture). Using in vitro endoproteolytic cleavage assay, we identified that the HtrA1 serine protease activity was dependent on the enzyme concentration and the incubation time and that the best reaction temperature was $42^{\circ}C$ instead of $37^{\circ}C$. We arbitrary defined one unit of proteolytic activity of the HtrA1 serine protease as 200nM of HtrA1 that cleaves half of $5{\mu}M\;of\;{\beta}-casein$ during 3 hr incubation at $37^{\circ}C$. Our study provides a method for generating useful reagents to investigate the molecular mechanisms by which HtrA1 serine protease activity contributes in regulating its physiological function and to identify natural substrates of HtrA1.

Role of PKR and EGR-1 in Induction of Interleukin-S by Type B Trichothecene Mycotoxin Deoxynivalenol in the Human Intestinal Epithelial Cells (B형 트리코테센 곰팡이 독소 데옥시니발레놀에 의한 인체 장관 상피세포 염증성 인터루킨 8유도에서의 PKR과 EGR-1의 상호 역할 규명)

  • Park, Seong-Hwan;Yang, Hyun;Choi, Hye-Jin;Park, Yeong-Min;Ahn, Soon-Cheol;Kim, Kwan-Hoi;Lee, Soo-Hyung;Ahn, Jung-Hoon;Chung, Duk-Hwa;Moon, Yu-Seok
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.949-955
    • /
    • 2009
  • Mucosal epithelia sense external stress signals and transmit them to the intracellular cascade responses. Ribotoxic stress-producing chemicals such as deoxynivalenol (DON) or other trichothecene mycotoxins have been linked with gastrointestinal inflammatory diseases by Fusarium-contamination. The purpose of this study was to test the hypothesis that DON evokes the epithelial sentinel signals of RNA-dependent protein kinase (PKR) and early growth response gene 1 (EGR-1), which together contribute to the pro-inflammatory cytokine interleukin 8 (IL-8) in human intestinal epithelial cells. PKR suppression by the dominant negative PKR expression attenuated DON-stimulated interleukin-8 production. Moreover, 1L-8 transcriptional activation by DON was also reduced by PKR inhibition in the human intestinal epithelial cells. Treatment with the PKR inhibitor also suppressed EGR-1 promoter activity, mRNA and protein induction, although mitogen-activated protein (MAP) kinases such as extracellular signal-regulated protein kinases (ERK) 1/2, p38, c-Jun N-terminal Kinase (INK) were little affected or even enhanced in presence of a PKR inhibitor. These patterns were also compared in the EGR-1-suppressed cells, which showed much more suppressed production of 1L-8. All things taken into consideration, DON-activated sentinel signals of EGR-1 via PKR mediated interleukin-8 production in human intestinal epithelial cells, which provide insight into the possible general mechanism associated with mucosal inflammation as an intestinal toxic insult by ribotoxic trichothecene mycotoxins.

Studies on the Drought-Resistance of Major Food Crops I. Effect of Water Stress on the Plant Height, Seedling Dry Weight, Relative Turgidity, Protein and Reducing Sugar in Barley and Wheat Seedling Stage (주요작물의 한발저항성에 관한 연구 제1보 맥류 유묘기의 수분부족이 초장, 유묘건물종, 엽침소, 상대팽압도, 단백질 및 환원당에 미치는 영향)

  • 최원열;민경수;김용환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.4
    • /
    • pp.304-310
    • /
    • 1981
  • In order to observe the degree and response of drought-resistance and its physiological mechanism in barley and wheat, 5 species (16 cultivars) were tested for changes in plant height, seedling dry weight, chlorophyll content, leaf relative turgidity, soluble protein, reducing sugar and growth of seedling subjected to water stress by withholding watering for 8 days at 10 days (at the 3rd leaf stage) after emergence. The average rate of decrease of all cultivars was 15% in plant height, 24% in seedling dry weight, 32% in chlorophyll content, 27% in leaf relative turgidity, and 27% in protein. But reducing sugar content of control was increased 4 folds more than that of water stress. In the decreased rate of seedling dry weight of each cultivar, rye was shown to be lowest rate, and Baegdong, Mokpo #55, and 3 two-row barley were shown to be the highest rate. The degree of the decreased rate in 5 species was in the order of rye < < wheat < covered barley < naked barley < two-row barley. in the decreased rate of chlorophyll content, rye, Cheonggaemil and Olmil are the lowest group, and the highest one are Milyang #12, Bangsa #6, Hyangmaeg and Sacheon #4. In the decreased rate of leaf relative turgidity, the lowest group (22-25%) were rye, Cheonggaemil and Dongbori #1, and, on the other hand, the highest group (30-33%) were Baegdong and 3 two-row barley. In the decreased rate of soulble protein, the lowest group (14-17%) were Chogwang, Geurumil, Dongbori #1, and Mokpo #55, and the highest one was 3 two-row barley. The increased ratio of reducing sugar of water stress to control was 4 to 5 folds in rye and wheat, and about 2 folds in naked barley and 3 two-row barley. The degree of the increased ratio of 5 species was in the order of rye > wheat > covered barley > naked barley > two-row barley. In terms of the physiological and adaptive metabolism during the processing leading to drought-resistance, the degree of drought-resistance of 5 species to water stress at seedling stage was shown to be in the order of rye > wheat > covered barley > naked barley > two-row-barley.

  • PDF

Characterization of HtrA2-deficient Mouse Embryonic Fibroblast Cells Based on Morphology and Analysis of their Sensitivity in Response to Cell Death Stimuli. (HtrA2 유전자가 결손된 mouse embryonic fibroblast 세포주의 형태학적 특징 및 세포사멸 자극에 대한 감수성 조사)

  • Lee, Sang-Kyu;Nam, Min-Kyung;Kim, Goo-Young;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.522-529
    • /
    • 2008
  • High-temperature requirement A2(HtrA2) has been known as a human homologue of bacterial HtrA that has a molecular chaperone function. HtrA2 is mitochondrial serine protease that plays a significant role in regulating the apoptosis; however, the physiological function of HtrA2 still remains elusive. To establish experimental system for the investigation of new insights into the function of HtrA2 in mammalian cells, we first obtained $HtrA2^{+/+}$ and $HtrA2^{-/-}$ MEF cells lines and identified those cells based on the expression pattern and subcellular localization of HtrA2, using immunoblot and biochemical assays. Additionally, we observed that the morphological characteristics of $HtrA2^{-/-}$ MEF cells are different form those of $HtrA2^{+/+}$ MEF cells, showing a rounded shape instead of a typical fibroblast-like shape. Growth rate of $HtrA2^{-/-}$ MEF cells was also 1.4-fold higher than that of $HtrA2^{+/+}$ MEF cells at 36 hours. Furthermore, we verified both MEF cell lines induced caspsase-dependent cell death in response to apoptotic stimuli such as heat shock, staurosporine, and rotenone. The relationship between HtrA2 and heat shock-induced cell death is the first demonstration of the research field of HtrA2. Our study suggests that those MEF cell lines are suitable reagents to further investigate the molecular mechanism by which HtrA2 regulates the balance between cell death and survival.

Effect of Prostaglandin F2 Alpha on E-cadherin, N-cadherin and Cell Adhesion in Ovarian Luteal Theca Cells (난소의 황체협막세포에서 E-cadherin, N-cadherin과 세포부착에 미치는 Prostaglandin F2 Alpha의 영향)

  • Lee, Sang-Hee;Jung, Bae Dong;Lee, Seunghyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.360-369
    • /
    • 2019
  • Cadherins are essential transmembrane proteins that promote cell-cell adhesion and maintain the corpus luteum structure in the ovary. This study examined the influence of prostaglandin F2 alpha ($PGF2{\alpha}$) on E-cadherin, N-cadherin, and adhesion in luteal theca cells (LTCs). The luteal cells were isolated from the mid-phase corpus luteum, and the LTCs were cultured separately from the luteal heterogeneous cells according to the morphology of the mesenchymal cells and to determine if steroidogenic and endothelial cells of LTCs, 3beta-hydroxysteroid dehydrogenase ($3{\beta}$-HSD), and vascular endothelial growth factor receptor 2 (VEGFR2) mRNA were used. The LTCs were then incubated in the culture medium supplemented with 0.01, 0.1, and 1.0 mM $PGF2{\alpha}$ for 24 h, and the E-cadherin and N-cadherin proteins in the LTCs were detected by confocal laser scanning microscopy. The results revealed $3{\beta}$-HSD mRNA expression in the LTC but no VEGF2R mRNA expression. The E-cadherin and N-cadherin proteins of the LTCs were damaged in the 0.01, 0.1, and 1.0 mM $PGF2{\alpha}$ treatment groups, and the expression of the N-cadherin protein was reduced significantly in 0.01 mM $PGF2{\alpha}$ compared to the 0 mM $PGF2{\alpha}$ treatment groups (P<0.05). In addition, the number of attached LTCs were significantly lower in the 0.01 mM $PGF2{\alpha}$ treatment group than in the 0 mM $PGF2{\alpha}$ treatment group (P<0.05). In conclusion, $PGF2{\alpha}$ affected the disruption of cadherin proteins and cell adhesion in LTCs. These results may help better understand the cadherin and adhesion mechanism during corpus luteum regression in the ovary.

Does the Availability of Various Types and Quantity of Food Limit the Community Structure of the Benthos (Mollusks) Inhabiting in the Hard-bottom Subtidal Area? (먹이생물의 종류와 양이 암반 조하대 저서동물(연체동물) 군집구조 결정요소가 될 수 있는가?)

  • SON, MIN-HO;KIM, HYUN-JUNG;KANG, CHANG-KEUN;HWANG, IN-SUH;KIM, YOUNG-NAM;MOON, CHANG-HO;HWANG, JUNG-MIN;HAN, SU-JIN;LEE, WON-HAENG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.128-138
    • /
    • 2019
  • Effects of feeding type and food resource availability on community structure of mollusks inhabiting hard-bottom subtidal areas were investigated. By following guidance from several references, mollusks observed in this study were divided into 5 groups according to feeding type - 1) grazing, 2) filter feeding, 3) deposit feeding, 4) omnivorous and 5) predation. The results showed that both grazing and filter feeders were the most numerous, explaining grazing type in the East Sea accounting for 47.9%, 32.6% in the South Sea and 29.6% for filter feeding, and filter feeding as a dominant feeding type in Yellow Sea accounting for 42.3%. Results of this study showed distinctive difference in community structure depending on mechanism of feeding type and geographical areas where sampling took place. With the results, attempts were made to understand whether community structure could be affected by feeding type or feeding availability and found out that community structure depended heavily on food resource availability. In the East Sea where marine algal density was high, the algal community in the forms of thick-leathery and sheet often occurred in water column with high transparency which provides proper environment for growth. In the South Sea where grazing and filter feeding types were predominated similarly, the algal density was high, but had the relative highest phytoplankton density. Whereas in the Yellow Sea showing the lowest algal biomass compared to the one in the East and the South Sea, and phytoplankton density was similar to those. It might be a adequate environment for filter feeders than grazers. This study concluded that community structure of mollusks showing high abundance was present where food resource availability with types and quantity was high.

A study on the effect of startup entrepreneurs' experience of industry-university cooperation through incubator organizations on organizational learning capability and innovation performance (벤처기업 창업가의 배태조직과 산학협력 경험이 조직학습역량과 혁신성과에 미치는 영향)

  • Kim, Deokyong;Bae, Sung Joo
    • Journal of Technology Innovation
    • /
    • v.30 no.2
    • /
    • pp.29-58
    • /
    • 2022
  • Startups lack resources and manpower to build internal capabilities to strengthen market competitiveness; external cooperation such as joint research and networking plays is important. In this study, we analyzed the effect of startups' industry-university cooperation on organizational learning capability and innovation performance. Empirical results demonstrate the mechanism by which government R&D investment strengthens organizational learning capability and creates innovative results by promoting cooperation between startups and universities. First, industry-university cooperation strengthened organizational learning capability. An empirical analysis shows that startups increase internal capabilities through external cooperation. Second, startups' organizational learning capability had a significant effect on innovation performance. We analyze how organizations with high learning capabilities positively develop corporate innovation performance by having a culture of discovery and sharing new ideas. Finally, industry-university cooperation had different effects on organizational learning capability and innovation performance according to the previous experiences of startup founders. In particular, small- and medium-sized (startup) businesses and individual-based experience groups positively affected the creation of organizational learning capabilities and innovation performance through industry-university cooperation. Small- and medium-sized businesses and individual founders have a relatively small cooperative network with the outside world compared to founders of large companies, universities, and research institutes; therefore, they strengthen organizational learning capabilities through cooperation with universities. This study demonstrates that government should create policy inducements for cooperation with universities to maximize the R&D performance of startups. Criticism exists that lending support to startups and universities will hinder innovation performance; nevertheless, government investment plays a role in expanding intangible resources such as accumulating technologies, fostering high-quality human resources, and strengthening innovation networks. Therefore, the government should appropriately utilize the its authority to strengthen investment strategies for startup growth.

CLK3 is a Novel Negative Regulator of NF-κB Signaling (NF-κB 신호경로에서 CLK3의 새로운 음성 조절자로서의 기능)

  • Byeol-Eun, Jeon;Chan-Seong, Kwon;Ji-Eun, Lee;Ye-Lin, Woo;Sang-Woo, Kim
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.833-840
    • /
    • 2022
  • Chronic inflammation has been shown to be closely associated with tumor development and progression. Nuclear factor kappa B (NF-κB) is composed of a family of five transcription factors. NF-κB signaling plays a crucial role in the inflammatory response and is often found to be dysregulated in various types of cancer, making it an attractive target in cancer therapeutics. In this study, CDC-like kinase 3 (CLK3) was identified as a novel kinase that regulates the NF-κB signaling pathway. Our data demonstrate that CLK3 inhibits the canonical and non-canonical NF-κB pathways. Luciferase assays following the transient or stable expression of CLK3 indicated that this kinase inhibited NF-κB activation mediated by Tumor necrosis factor-alpha (TNFα) and Phorbol 12-myristate 13-acetate (PMA), which are known to activate NF-κB signaling via the canonical pathway. Consistent with data on the ectopic expression of CLK3, CLK3 knockdown using shRNA constructs increased NF-κB activity 1.5-fold upon stimulation with TNFα in HEK293 cells compared with the control cells. Additionally, overexpression of CLK3 suppressed the activation of this signaling pathway induced by NF-κB-inducing kinase (NIK) or CD40, which are well-established activators of the non-canonical pathway. To further examine the negative impact of CLK3 on NF-κB signaling, we performed Western blotting following the TNFα treatment to directly identify the molecular components of the NF-κB pathway that are affected by this kinase. Our results revealed that CLK3 mitigated the phosphorylation/activation of transforming growth factor-α-activated kinase 1 (TAK1), inhibitor of NF-κB kinase alpha/beta (IKKα/α), NF-κB p65 (RelA), NF-κB inhibitor alpha (IκBα), and Extracellular signal-regulated kinase 1/2-Mitogen-activated protein kinase (ERK1/2-MAPK), suggesting that CLK3 inhibits both the NF-κB and MAPK signaling activated by TNFα exposure. Further studies are required to elucidate the mechanism by which CLK3 inhibits the canonical and non-canonical NF-κB pathways. Collectively, these findings reveal CLK3 as a novel negative regulator of NF-κB signaling.

Contaminant Mechanism and Management of Tracksite of Pterosaurs, Birds, and Dinosaurs in Chungmugong-dong, Jinju, Korea (천연기념물 진주 충무공동 익룡·새·공룡발자국 화석산지의 오염물 형성 메커니즘과 관리방안)

  • Myoungju Choie;Sangho Won;Tea Jong Lee;Seong-Joo Lee;Dal-Yong Kong;Myeong Seong Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.715-728
    • /
    • 2023
  • Tracksite of pterosaurs, birds, and dinosaurs in Chungmugong-dong in Jinju was designated as a natural monument in 2011 and is known as the world's largest in terms of the number and density of pterosaur footprints. This site has been managed by installing protection buildings to conserve in 2018. About 17% of the footprints of pterosaur, theropod, and ornithopod in this site under management in the 2nd protection building are of great academic value, but observation of footprints has difficulties due to continuous physical and chemical damage. In particular, the accumulation of milk-white contaminants is formed by the gypsum and air pollutant complex. Gypsum remains evaporated with a plate or columnar shape in the process of water circulation around the 2nd protection building, and the dust is from through the inflow of the gallery windows. The aqueous solution of gypsum, consisting of calcium from the lower bed and sulfur from grass growth, is catchmented into the groundwater from the area behind the protection building. Pollen and a few minerals other constituents of contaminants, go through the gallery window, which makes it difficult to expel dust. To conserve the fossil-bearing beds from two contaminants of different origins, controlling the water and atmospheric circulation of the 2nd protection building and removing the contaminants continuously is necessary. When cleaning contaminants, the steam cleaning method is sufficiently effective for powder-shaped milk-white contaminants. The fossil-bearing bed consists of dark gray shale with high laser absorption power; the laser cleaning method accompanies physical loss to fossils and sedimentary structures; therefore, avoiding it as much as possible is desirable.