• Title/Summary/Keyword: Growth Curve Parameter

Search Result 61, Processing Time 0.018 seconds

Genetic Aspects of the Growth Curve Parameters in Hanwoo Cows (한우 암소의 성장곡선 모수에 대한 유전적 경향)

  • Lee, Chang-U;Choe, Jae-Gwan;Jeon, Gi-Jun;Kim, Hyeong-Cheol
    • Journal of Animal Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.29-38
    • /
    • 2006
  • The objective of this study was to estimate genetic variances of growth curve parameters in Hanwoo cows. The data used in this study were records from 1,083 Hanwoo cows raised at Hanwoo Experiment Station, National Livestock Research Institute(NLRI). First evaluation model(Model I) fit year-season of birth and age of dam as fixed effects and second model(Model II) added age at the final weight as a linear covariate to Model I. Heritability estimates of A, b and k from Gompertz model were 0.22, 0.11 and 0.07 using modelⅠ and 0.28, 0.11 and 0.12 using modelⅡ. Those from Von Bertalanffy model were 0.22, 0.11 and 0.07 using modelⅠ, 0.28, 0.11 and 0.12 using modelⅡ. Heritability estimates of A, b and k from Logistic model were 0.14, 0.07 and 0.05 using modelⅠ, 0.18, 0.07 and 0.12 using modelⅡ. Heritability estimates of A from Gompertz model were higher than those from Von Bertalanffy model or Logistic model in both model Ⅰand model Ⅱ. Heritability estimates of b from Logistic model were higher than those from Gompertz model or Von Bertalanffy model in both modelⅠand model Ⅱ. Heritability estimates of birth weight, weaning weight, 3 month weight, 6 month weight, 9 month weight, 12 month weight, 18 month weight, 24 month weight, 36 month weight were after linear age adjustment 0.27, 0.11, 0.19, 0.14, 0.16, 0.23, 0.52 and 0.32, respectively. Heritability estimates of birth weight, weaning weight, 3 month weight, 6 month weight, 9 month weight and 24 month weight fit by Gompertz model were larger than those estimated from linearly adjusted data. Heritability estimates of 12 month weight, 18 month weight and 36 month weight fit by Von Bertalanffy model were larger than those estimated from linearly adjusted data. In the multitrait analyses for parameters from Gompertz model, genetic and phenotypic correlations between A and k parameters were -0.47 and -0.67 using modelⅠand -0.56 and -0.63 using model Ⅱ. Those between the A and b parameters were 0.69 and 0.34 using modelⅠand 0.72 and 0.37 using model Ⅱ. Those between the b and k parameters were -0.26 and 0.01 using modelⅠand -0.30 and 0.01 using model Ⅱ. In the multitrait analyses for parameters from Von Bertalanffy model, genetic and phenotypic correlations between A and k parameters were -0.49 and -0.67 suing model Ⅰ and -0.57 and -0.70 using modelⅡ. Those between the A and b parameters were 0.61 and 0.33 using modelⅠ and 0.60 and 0.30 using model Ⅱ. Those between the b and k parameters were -0.20 and 0.02 using modelⅠ and 0.16 and 0.00 using modelⅡ. In the multitrait analyses for parameters from Logistic model, genetic and phenotypic correlations between A and k parameters were -0.43 and -0.67 using model Ⅰ and -0.50 and -0.63 using modelⅡ. Those between the A and b parameters were 0.47 and 0.22 using modelⅠ and 0.38 and 0.24 using modelⅡ. Those between the b and k parameters were -0.09 and 0.02 using model Ⅰ and -0.02 and 0.13 using model Ⅱ.