• Title/Summary/Keyword: Growing Steers

Search Result 92, Processing Time 0.02 seconds

Effects of Trace Mineral Source and Growth Implants on Trace Mineral Status of Growing and Finishing Feedlot Steersa,b,c

  • Dorton, K.L.;Wagner, J.J.;Larson, C.K.;Enns, R.M.;Engle, T.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.7
    • /
    • pp.907-915
    • /
    • 2010
  • Three hundred and seventy-three steers (approximately 7 mo of age and $247{\pm}19.4\;kg$) were utilized to determine the effects of trace mineral (TM) source and growth implants on trace mineral status. Steers were blocked by ranch, post-weaning treatment within ranch, stratified by initial body weight, and randomly assigned to one of 36 pens (9-12 head/pen). Treatment consisted of: I) control (no supplemental Cu, Zn, Mn, and Co), ii) inorganic trace minerals, and iii) organic trace minerals. Six pens of steers per treatment received a growth implant at the beginning of the experiment and were re-implanted during the finishing phase. The remaining steers received no growth implants. Steers were fed a corn silage-based growing diet for 56 d then were gradually switched to a high concentrate finishing diet. Treatments during the finishing phase consisted of: i) control (no supplemental Zn); ii) inorganic Zn (30 mg of Zn/kg DM from $ZnSO_4$); and iii) organic Zn (iso-amounts of organic Zn). By the end of the growing and finishing phases, implanted steers had greater (p<0.01) plasma Cu concentrations than non-implanted steers. During the growing phase, liver Cu concentrations (p<0.01) and plasma Zn concentrations (p<0.02) were greater in steers supplemented with TM compared to control steers. Steers supplemented with inorganic minerals had greater liver Cu concentrations than steers supplemented with organic minerals at the beginning (p<0.01) and end (p = 0.02) of the growing phase. During both the growing (p = 0.02) and finishing phases (p = 0.05), nonimplanted control steers had greater plasma Cu concentrations than non-implanted steers supplemented with TM, whereas, implanted control steers had similar plasma Cu concentrations than implanted steers supplemented with TM. Non-implanted steers that received inorganic TM had lower plasma Cu concentrations (p = 0.03) during the growing phase and ceruloplasmin activity (p<0.04) during the finishing phase than non-implanted steers that received organic TM, whereas, implanted steers supplemented with either organic or inorganic TM had similar plasma Cu concentrations.

Effects of the crude protein concentration on the growth performance and blood parameters in growing Hanwoo steers (Bos taurus coreanae)

  • Seoyoung, Jeon;Hyunjin, Cho;Hamin, Kang;Kyewon, Kang;Mingyung, Lee;Enkyu, Park;Seokman, Hong;Seongwon, Seo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.975-985
    • /
    • 2021
  • The sufficient amount of protein supply is crucial for improving the growth performance of growing beef cattle. In addition, due to the improvement in the genetic potential of the carcass weight of Hanwoo steers, dietary protein requirements may be increased during the rapid growth period. Accordingly, the dietary crude protein (CP) level in growing Hanwoo steers has been increasing in the field. However, little scientific evidence is available in relation to this. Therefore, this study was conducted to test whether a higher dietary CP level than convention would improve the growth performance and body metabolism in growing Hanwoo steers. Fifty growing Hanwoo steers were randomly divided into two groups and fed either a commercial diet (CON) or a higher CP (HCP) concentrate mix, provided with a similar level of dietary energy. Tall fescue hay was provided ad libitum. The dietary CP level did not affect growth performance and blood metabolite. Nitrogen intake, predicted nitrogen excretion, and retained nitrogen were higher in the HCP group than in the CON group (p < 0.01). Although there was no difference in the nitrogen utilization efficiency, the growth efficiency per retained nitrogen decreased in the HCP group (p = 0.02). A higher dietary CP level may increase nitrogen retention in growing Hanwoo steers without improving growth performance, which leads to reduced growth efficiency per retained nitrogen. Furthermore, considering the high price of feed protein and increased nitrogen excretion to the environment, a further increase in the protein level may not be sustainable.

Effects of Trace Mineral Supplementation and Source, 30 Days Post-weaning and 28 Days Post Receiving, on Performance and Health of Feeder Cattle

  • Dorton, K.L.;Engle, T.E.;Enns, R.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1450-1454
    • /
    • 2006
  • Three hundred and seventy-five steers (approximately 7 mo of age and $239.0{\pm}10.4kg$) were utilized to determine the effects of trace mineral (TM) supplementation and source on performance during the on-farm backgrounding and feedlot receiving phases of beef cattle production. At their respective ranches, steers were stratified by body weight into six groups. Groups were then assigned to one of six pens and pens were randomly assigned to treatments. Treatments consisted of: 1) control (no supplemental Cu, Zn, Mn, and Co), 2) inorganic trace mineral ($CuSO_4$, $ZnSO_4$, $MnSO_4$, and $CoCO_3$), and 3) organic trace mineral (iso-amounts of organic Cu, Zn, Mn, and Co). Mineral treatments were fed in alfalfa pellets formulated to supply 360 mg of Zn, 200 mg of Mn, 125 mg of Cu, and 12.5 mg of Co per head per day from either organic or inorganic trace mineral sources. Control steers received alfalfa pellets with no additional Cu, Zn, Mn, or Co. Steers were allowed free access to harvested alfalfa-grass hay throughout the 30-d on-farm backgrounding phase. On day 30 post-weaning, steers were weighed and transported to the feedlot. Steers were blocked by treatment within ranch, stratified by initial body weight, and randomly assigned to one of 36 pens (9-12 head per pen; 12 pens per treatment). Steers remained on the same on-farm backgrounding trace mineral treatments, however, trace mineral treatments were included in the total mixed growing ration. Steers were fed a corn silage-based growing diet throughout the 28 d feedlot receiving period. There was no effect of TM supplementation on performance of steers during the on-farm backgrounding phase. By the end of the 28-d feedlot receiving phase, ADG was similar between control and trace mineral supplemented steers. Steers supplemented with organic TM had greater (p<0.05) ADG than steers supplemented with inorganic TM by the end of the 28-d feedlot receiving phase. Morbidity and mortality rates were similar across treatments.

WATER TURNOVER OF GROWING CATTLE FED FRESH CUT GRASS OR HAY AND GRAZED ON PASTURE

  • Sekine, J.;Morita, Z.;Asahida, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.3
    • /
    • pp.163-166
    • /
    • 1988
  • Water turnover and consumption of steers fed either fresh cut grass or hay and water turnover of steers grazed in summer or in fall were determined using 18 Holstein steers weighing 226 to 382 kg. Steers consumed 7.0 or 7.5 kg of dry-matter from hay or fresh cut grass. Animals fed hay drank significantly more water than those given fresh cut grass (P<0.01). Total water consumption, however, was greater in steers fed fresh cut grass than those given hay (P<0.05). Water turnover was about the same as total water consumption with a tendency for slightly higher values in water turnover irrespective of feeding regimes. Steers grazed in summer had greater water turnover than those grazed in fall. Water turnover was about the same in steers fed fresh cut grass and grazed in summer but decreased in steers on the dry ration or grazing in a cool season of the year.

The Effects of Copper Source and Concentration on Lipid Metabolism in Growing and Finishing Angus Steers

  • Johnson, L.R.;Engle, T.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1131-1136
    • /
    • 2003
  • Forty-eight individually fed Angus steers (body weight $220kg{\pm}9.1$) were utilized to investigate the effects of copper (Cu) source and concentration on lipid metabolism and carcass quality. Steers were stratified by body weight and initial liver Cu concentration and randomly assigned to one of five groups. Groups were then randomly assigned to treatments. Treatments consisted of: 1) control (no supplemental Cu); 2) 10 mg Cu/kg DM from $CuSO_4$; 3) 10 mg Cu/kg DM from a Cu amino acid complex (Availa Cu) 4) 20 mg Cu/kg DM from $CuSO_4$; and 5) 20 mg Cu/kg DM from Availa Cu. Steers were fed a corn-alfalfa-based growing diet for 56 d. Steers were then switched to a high concentrate finishing diet for 145 d. On day 74 of the finishing phase subcutaneous adipose tissue biopsies were obtained from three steers/treatment to determine basal and stimulated lipolytic rates in vitro. Steers were then slaughtered after receiving the finishing diet for 145 d. Control steers tended (p<0.12) to have lower ceruloplasmin (Cp) activity than Cu supplemented steers. Steers receiving 20 mg Cu/kg DM from Availa Cu had higher (p<0.03) Cp activity than steers receiving 20 mg Cu/kg DM from $CuSO_4$. Plasma non-esterified fatty acids were similar across treatments. Steers receiving 10 mg Cu/kg DM from Availa Cu had higher (p<0.02) total plasma cholesterol concentrations relative to steers receiving 10 mg Cu/kg DM from $CuSO_4$. Steers receiving 20 mg Cu/kg DM from Availa Cu had lower (p<0.03) plasma triglyceride concentrations than steers supplemented with 20 mg Cu/kg DM from $CuSO_4$. Fatty acid profile of longissimus muscle was similar across treatments. Backfat depth tended (p<0.18) to be lower in Cu supplemented steers relative to controls. Steers supplemented with 20 mg Cu/kg DM from Availa Cu had heavier (p<0.03) hot carcass weights and a greater (p<0.02) dressing percentage than steers supplemented with 20 mg Cu/kg DM from $CuSO_4$. Furthermore, in vitro basal (p<0.06) and epinephrine stimulated (p<0.04) lipolytic rates of subcutaneous adipose tissue were higher in Cu supplemented steers relative to controls. The results of this study suggest that Cu supplementation has minimal effects on blood and lean tissue lipid profile. However, it appears that Cu may play a role in lipid metabolism in subcutaneous adipose tissue.

A COMPARISON OF SIMULATION MODELS BASED ON ARC METABOLIZABLE ENERGY SYSTEM AND NRC NET ENERGY SYSTEM WITH SPECIAL REFERENCE TO GROWING STEERS

  • Hirooka, H.;Yamada, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.2 no.4
    • /
    • pp.599-605
    • /
    • 1989
  • A comparison of the ARC metabolizable energy system and the NRC net energy system was made with special reference to growing steers. Two simulation models, one based on the ARC and other on the NRC system, were constructed to examine differences between the energy systems. The average daily live-weight gains predicted from both models for growing steers were compared under various conditions in which equal feeding levels and metabolizabilities were assumed. The two simulation models yielded similar results with very high energy intake with high quality feed. Difference between the two systems became larger as feeding conditions deviated from the above. The ARC system generally predicted higher daily live-weight gains than the NRC system. This appeared to be due to the higher efficiency of utilization of metabolizable energy ($k_m$ and $k_f$) and basal metabolism (F), and lower energy value of growth (EVG) in the ARC system.

Effects of Feeding Methods of Total Mixed Ration on Behavior Patterns of Growing Hanwoo Steers

  • Lee, Sang-Moo;Kim, Young-Il;Oh, Young-Kyoon;Kwak, Wan-Sup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.11
    • /
    • pp.1469-1475
    • /
    • 2010
  • A study was conducted to investigate the effects of methods of feeding a total mixed ration (TMR) on behavior patterns of growing Hanwoo steers. A total of 15 growing steers (13 months old) were assigned to the control (fed roughage and concentrate mix separately), TMR1 (fed restricted TMR), and TMR2 (fed TMR ad libitum) groups. Individual behaviors of steers were observed for 48 hours. Compared with the control, feeding restricted TMR (TMR1) resulted in short eating time, long ruminating time, short chewing time, high frequencies of defecation, urination, and drinking of water, great numbers of boluses and chews, long ruminating time per bolus, low feed value index, high eating and chewing efficiencies (p<0.05). Compared with feeding restricted TMR (TMR1), feeding TMR ad libitum (TMR2) resulted in 1.2 kg more daily feed DM intake, long eating and chewing times, short resting time, great frequencies of defecation, urination and drinking of water, more numbers of boluses and chews, long ruminating time per bolus, low feed value index, low eating and high ruminating efficiencies (p<0.05) and similar chewing efficiency (p>0.05). Considering all these results, the wet TMR feeding system induced generally more desirable eating and ruminating behaviors of growing Hanwoo steers, but made the barn floor wetter due to more defecation and urination.

Determination of in situ degradation parameters and feeding level of pineapple (Ananas comosus L.) cannery by-product to Hanwoo steers

  • Choi, Yongjun;Park, Keunkyu;Lee, Sangrak;Na, Youngjun
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.85-92
    • /
    • 2021
  • Objective: The objectives of this study were to determine the in situ degradation parameters and appropriate feeding level of pineapple cannery by-products (PCB) based on the growth performance and blood parameters of growing Hanwoo (Bos taurus coreanae) steers fed various levels of PCB. Methods: Two ruminally cannulated Holstein cows were used for in situ disappearance rate measurements. Nylon bags (5×10 cm, 45 ㎛ pore size) filled with 5 g of PCB in triplicate were inserted into the ventral sac of the two cannulated Holsteins cows and incubated for 0, 2, 4, 8, 16, 24, and 48 h. A total of 16 castrated growing Hanwoo steers (12.5±0.5 months old, 302.9±25.7 kg of initial body weight [BW]) were used for the experiment. Animals were stratified by initial BW and then randomly assigned to one of four experimental diets (0%, 1.5%, 3.0%, or 6.0% of PCB, on the dry matter [DM] basis) fed for 91-d, including 30-d of adaptation. Results: Soluble fraction a of DM and crude protein (CP) was 61.9% and 86.0%, fraction b of DM and CP was 32.7% and 11.2%, and indigestible fraction c of DM and CP was 5.4% and 2.8%. The 6.0% PCB feeding group showed lower productivity compared to animals in the other treatments. Increasing the dietary level of PCB did not alter DM intake, but it was numerically lowest in the 6.0% feeding group. The gain to feed ratio was linearly decreased by increasing of PCB. The quadratic broken-line test estimated that 2.5% (DM basis) was the maximum feeding level of PCB in growing Hanwoo steers (y = 0.103 - 0.001×[1.245-x]2, R2 = 0.18). Conclusion: Diets containing up to 2.5% PCB can be fed to growing Hanwoo steers without adverse effects on growth performance.

A Study on Changes in Feed Digestibility and Establishment of Energy Requirement for Maintenance of Growing Hanwoo Steers under Severe Heat Stress (심각한 열스트레스에 의한 육성기 거세한우의 사료 소화율 변화 탐색 및 유지를 위한 에너지 요구량 설정 연구)

  • Cho, Yu Kyung;Choi, Seong Ho;Han, Ouk Kyu;Park, Joung Hyun;Choi, Chang Weon
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.163-172
    • /
    • 2016
  • Four growing Hanwoo cattle weighing 200±11.7kg were used within 4×4 Latin square design to establish nutrient requirements for Hanwoo growing steers under severe heat stress. The steers were fed four different energy level diets; 100%(control), 100%(E100), 115%(E115) and 130%(E130) of energy levels of growing Hanwoo steers based on total digestible nutrient level suggested by the Korea Feeding Standard for Hanwoo using timothy hay and commercial concentrate. The steers in the control were housed with no stress, whereas the steers in the other groups were under severe heat stress. The severe heat stress significantly decreased(p<0.05) true digestibility of dry matter(i.e. control 81.5% vs E100 79.1, E115 77.0 and E130 76.0, respectively). The severe heat stress and different energy intake levels did not affect blood physiological metabolites and body temperature of the growing steers. Based on changes in average daily gain by different energy intake level, the equation(Y=0.235X+115.03) of energy requirement of growing Hanwoo steers without changes in body weight was calculated, indicating that, compared with the present energy intake suggested by Korean feeding standard, 15.03% of dietary energy for maintenance of growing Hanwoo steers under severe heat stress should be increased.

Effects of feeding high-energy diet on growth performance, blood parameters, and carcass traits in Hanwoo steers

  • Kang, Dong Hun;Chung, Ki Yong;Park, Bo Hye;Kim, Ui Hyung;Jang, Sun Sik;Smith, Zachary K.;Kim, Jongkyoo
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1545-1555
    • /
    • 2022
  • Objective: Our study aimed to investigate the effects of a 2% increase in dietary total digestible nutrients (TDN) value during the growing (7 to 12 mo of age) and fattening (13 to 30 mo of age) period of Hanwoo steers. Methods: Two hundred and twenty Hanwoo steers were assigned to one of two treatments: i) a control group (basal TDN, BTDN, n = 111 steers, growing = 70.5%, early fattening = 71.0%, late fattening = 74.0%) or high TDN (HTDN, n = 109 steers, growing = 72.6%, early = 73.1%, late = 76.2%). Growth performance, carcass traits, blood parameters, and gene expression of longissimus dorsi (LD) (7, 18, and 30 mo) were quantified. Results: Steers on the BTDN diets had increased (p≤0.02) DMI throughout the feeding trial compared to HTDN, but gain did not differ appreciably. A greater proportion of cattle in HTDN received Korean quality grade 1 (82%) or greater compared to BTDN (77%), while HTDN had a greater yield grade (29%) than BTDN (20%). Redness (a*) of LD muscle was improved (p = 0.021) in steers fed HTDN. Feeding the HTDN diet did not alter blood parameters. Steers fed HTDN diet increased (p = 0.015) the proportion of stearic acid and tended to alter linoleic acid. Overall, saturated, unsaturated, monounsaturated, and polyunsaturated fatty acids of LD muscle were not impacted by the HTDN treatment. A treatment by age interaction was noted for mRNA expression of myosin heavy chain (MHC) IIA, IIX, and stearoyl CoA desaturase (SCD) (p≤0.026). No treatment effect was detected on gene expression from LD muscle biopsies at 7, 18, and 30 mo of age; however, an age effect was detected for all variables measured (p≤0.001). Conclusion: Our results indicated that feeding HTDN diet could improve overall quality grade while minimum effects were noted in gene expression, blood parameters, and growing performance. Cattle performance prediction in the feedlot is a critical decision-making tool for optimal planning of cattle fattening and these data provide both benchmark physiological parameters and growth performance measures for Hanwoo cattle feeding enterprises.