• Title/Summary/Keyword: Growing Season

Search Result 1,006, Processing Time 0.03 seconds

The Effects of Seeding Pattern and Rate on the Yield and Agronomic Characters of Barley Under Different Cultural Conditions (대맥의 파종양식 및 파종밀도가 몇가지 재배조건하에서의 수량 및 주요실용형질에 미치는 영향)

  • Pyeong-Ki Yim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.21 no.1
    • /
    • pp.136-179
    • /
    • 1976
  • Effects of seeding pattern and rate on the yield and some agronomic characters of barley under different cultural conditions were observed at Suweon, Daejeon and Jinju during the barley growing season from 1972 to 1974. Plant height and culm length were increased by dense seeding, shading, heavy fertilization, moving location down to the lower latitude. The tiller number per plant, dry matter weight, leaf number on main stem, percentage of valid tillers, RGR, NAR, and $R_{A}$ were increased by heavy fertilization, sparse seeding, reduced furrow width and drilling likewise the length, width and angle of leaf. The newer cultivar had higher RGR and NAR. The higher yielding cultivars had higher potential for carbohydrate assimilating ability. Straw weight and grain yield were increased by dense seeding, reduced furrow width, drilling, heavier fertilization and moving the location to the south, and then decreased by shading and late seeding. High yield increase by drilling was found in late seeding. The optimum seeding rate for the yield increase were 15l/10a for furrow and 25l/10a for drilling. The spike number type cultivars were favourable for the sparse seeding and the spike weight type cultivars seemed to be suitable to the dense seeding, The repeatability of days to heading due to location and fertilizer level was higher than that of seeding time and seeding method. Repeatability of culm length was extremly high in seeding method and comparatively high in fertilizer level while low in location. The repeatability of yield due to location and seeding methods was comparatively high, but the tendency was different along with different cultivars. Also the repeatability of yield due to the fertilizer level was generally high except cultivar Haganemngi.

  • PDF

Application of LCA on Lettuce Cropping System by Bottom-up Methodology in Protected Cultivation (시설상추 농가를 대상으로 하는 bottom-up 방식 LCA 방법론의 농업적 적용)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;Kim, Gun-Yeob;So, Kyu-Ho;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1195-1206
    • /
    • 2011
  • This study was conducted to apply LCA (Life cycle assessment) methodology to lettuce (Lactuca sativa L.) production systems in Namyang-ju as a case study. Five lettuce growing farms with three different farming systems (two farms with organic farming system, one farm with a system without agricultural chemicals and two farms with conventional farming system) were selected at Namyangju city of Gyeonggi-province in Korea. The input data for LCA were collected by interviewing with the farmers. The system boundary was set at a cropping season without heating and cooling system for reducing uncertainties in data collection and calculation. Sensitivity analysis was carried out to find out the effect of type and amount of fertilizer and energy use on GHG (Greenhouse Gas) emission. The results of establishing GTG (Gate-to-Gate) inventory revealed that the quantity of fertilizer and energy input had the largest value in producing 1 kg lettuce, the amount of pesticide input the smallest. The amount of electricity input was the largest in all farms except farm 1 which purchased seedlings from outside. The quantity of direct field emission of $CO_2$, $CH_4$ and $N_2O$ from farm 1 to farm 5 were 6.79E-03 (farm 1), 8.10E-03 (farm 2), 1.82E-02 (farm 3), 7.51E-02 (farm 4) and 1.61E-02 (farm 5) kg $kg^{-1}$ lettuce, respectively. According to the result of LCI analysis focused on GHG, it was observed that $CO_2$ emission was 2.92E-01 (farm 1), 3.76E-01 (farm 2), 4.11E-01 (farm 3), 9.40E-01 (farm 4) and $5.37E-01kg\;CO_2\;kg^{-1}\;lettuce$ (farm 5), respectively. Carbon dioxide contribute to the most GHG emission. Carbon dioxide was mainly emitted in the process of energy production, which occupied 67~91% of $CO_2$ emission from every production process from 5 farms. Due to higher proportion of $CO_2$ emission from production of compound fertilizer in conventional crop system, conventional crop system had lower proportion of $CO_2$ emission from energy production than organic crop system did. With increasing inorganic fertilizer input, the process of lettuce cultivation covered higher proportion in $N_2O$ emission. Therefore, farms 1 and 2 covered 87% of total $N_2O$ emission; and farm 3 covered 64%. The carbon footprints from farm 1 to farm 5 were 3.40E-01 (farm 1), 4.31E-01 (farm 2), 5.32E-01 (farm 3), 1.08E+00 (farm 4) and 6.14E-01 (farm 5) kg $CO_2$-eq. $kg^{-1}$ lettuce, respectively. Results of sensitivity analysis revealed the soybean meal was the most sensitive among 4 types of fertilizer. The value of compound fertilizer was the least sensitive among every fertilizer imput. Electricity showed the largest sensitivity on $CO_2$ emission. However, the value of $N_2O$ variation was almost zero.

Studies on the Varietal Difference in the Physiology of Ripening in Rice with Special Reference to Raising the Percentage of Ripened Grains (수도 등숙의 품종간차이와 그 향상에 관한 연구)

  • Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.1-40
    • /
    • 1973
  • There is a general tendency to increase nitrogen level in rice production to insure an increased yield. On the other hand, percentage of ripened grains is getting decreased with such an increased fertilizer level. Decreasing of the percentage is one of the important yield limiting factors. Especially the newly developed rice variety, 'Tongil' is characterized by a relatively low percentage of ripened grains as compared with the other leading varieties. Therefore, these studies were aimed to finding out of some measures for the improvement of ripening in rice. The studies had been carried out in the field and in the phytotron during the period of three years from 1970 to 1972 at the Crop Experiment Station in Suwon. The results obtained from the experiments could be summarized as follows: 1. The spikelet of Tongil was longer in length, more narrow in width, thinner in thickness, smaller in the volume of grains and lighter in grain weight than those of Jinheung. The specific gravity of grain was closely correlated with grain weight and the relationship with thickness, width and length was getting smaller in Jinheung. On the other hand, Tongil showed a different pattern from Jinheung. The relationship of the specific gravity with grain weight was the greatest and followed by that with the width, thickness and length, in order. 2. The distribution of grain weight selected by specific gravity was different from one variety to another. Most of grains of Jinheung were distributed over the specific gravity of 1.12 with its peak at 1.18, but many of grains of Tongil were distributed below 1.12 with its peak at 1.16. The brown/rough rice ratio was sharply declined below the specific gravity of 1.06 in Jinheung, but that of Tongil was not declined from the 1.20 to the 0.96. Accordingly, it seemed to be unfair to make the specific gravity criterion for ripened grains at 1.06 in the Tongil variety. 3. The increasing tendency of grain weight after flowering was different depending on varieties. Generally speaking, rice varieties originated from cold area showed a slow grain weight increase while Tongil was rapid except at lower temperature in late ripening stage. 4. In the late-tillered culms or weak culms, the number of spikelets was small and the percentage of ripened grains was low. Tongil produced more late-tillered culms and had a longer flowering duration especially at lower temperature, resulting in a lower percentage of ripened grains. 5. The leaf blade of Tongil was short, broad and errect, having light receiving status for photosynthesis was better. The photosynthetic activity of Tongil per unit leaf area was higher than that of Jinheung at higher temperature, but lower at lower temperature. 6. Tongil was highly resistant to lodging because of short culm length, and thick lower-internodes. Before flowering, Tongil had a relatively higher amount of sugars, phosphate, silicate, calcium, manganese and magnesium. 7. The number of spikelets of Tongil was much more than that of Jinheung. The negative correlation was observed between the number of spikelets and percentage of ripened grains in Jinheung, but no correlation was found in Tongil grown at higher temperature. Therefore, grain yield was increased with increased number of spikelets in Tongil. Anthesis was not occurred below 21$^{\circ}C$ in Tongil, so sterile spikelets were increased at lower temperature during flowering stage. 8. The root distribution of Jinheung was deeper than that of Tongil. The root activity of Tongil evaluated by $\alpha$-naphthylamine oxidation method, was higher than that of Jinheung at higher temperature, but lower at lower temperature. It is seemed to be related with discoloration of leaf blades. 9. Tongil had a better light receiving status for photosynthesis and a better productive structure with balance between photosynthesis and respiration, so it is seemed that tongil has more ideal plant type for getting of a higher grain yield as compared with Jinheung. 10. Solar radiation during the 10 days before to 30 days after flowering seemed enough for ripening in suwon, but the air temperature dropped down below 22$^{\circ}C$ beyond August 25. Therefore, it was believed that air temperature is one of ripening limiting factors in this case. 11. The optimum temperature for ripening in Jinheung was relatively lower than that of Tongil requriing more than $25^{\circ}C$. Air temperature below 21$^{\circ}C$ was one of limiting factors for ripening in Tongil. 12. It seemed that Jinheung has relatively high photosensitivity and moderate thermosensitivity, while Tongil has a low photosensitivity, high thermosensitivity and longer basic vegetative phase. 13. Under a condition of higher nitrogen application at late growing stage, the grain yield of Jinheung was increased with improvement of percentage of ripened grains, while grain yield of Tongil decreased due to decreasing the number of spikelets although photosynthetic activity after flowering was. increased. 14. The grain yield of Jinheung was decreased slightly in the late transplanting culture since its photosynthetic activity was relatively high at lower temperature, but that of Tonil was decreased due to its inactive photosynthetic activity at lower temperature. The highest yield of Tongil was obtained in the early transplanting culture. 15. Tongil was adapted to a higher fertilizer and dense transplanting, and the percentage of ripened grains was improved by shortening of the flowering duration with increased number of seedlings per hill. 16. The percentage of vigorous tillers was increased with a denser transplanting and increasing in number of seedlings per hill. 17. The possibility to improve percentage of ripened grains was shown with phosphate application at lower temperature. The above mentioned results are again summarized below. The Japonica type leading varieties should be flowered before August 20 to insure a satisfactory ripening of grains. Nitrogen applied should not be more than 7.5kg/10a as the basal-dressing and the remained nitrogen should be applied at the later growing stage to increase their photosynthetic activity. The morphological and physiological characteristics of Tongil, a semi-dwarf, Indica $\times$ Japonica hybrid variety, are very different from those of other leading rice varieties, requring changes in seed selection by specific gravity method, in milling and in the cultural practices. Considering the peculiar distribution of grains selected by the method and the brown/rough rice ratio, the specific gravity criterion for seed selection should be changed from the currently employed 1.06 to about 0.96 for Tongil. In milling process, it would be advisable to bear in mind the specific traits of Tongil grain appearance. Tongil is a variety with many weak tillers and under lower temperature condition flowering is delayed. Such characteristics result in inactivation of roots and leaf blades which affects substantially lowering of the percentage of ripened grains due to increased unfertilized spikelets. In addition, Tongil is adapted well to higher nitrogen application. Therefore, it would be recommended to transplant Tongil variety earlier in season under the condition of higer nitrogen, phosphate and silicate. A dense planting-space with three vigorous seedlings per hill should be practiced in this case. In order to manifest fully the capability of Tongil, several aspects such as the varietal improvement, culural practices and milling process should be more intensively considered in the future.he future.

  • PDF

Ecological Studies on the Transition of Sheath Blight of Rice in Korea (한국(韓國)에서의 벼 잎집무늬마름병 발생변동(發生變動)에 관(關)한 생태학적(生態學的) 연구(硏究))

  • Yu, Seung-hun
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.283-316
    • /
    • 1977
  • In an attempt to obtain a basic information to develop an effective integrated system of controlling sheath blight of rice in Korea, the transition of this disease, the variation of cultural characters and pathogenicity of the pathogen, environmental conditions affecting the disease outbreak and varietal resistance have been investigated. 1. Rice sheath blight which has been minor disease in the past was widely spread, especially since 1971. This disease has promptly spread all over the country and infected 65.2% of total rice growing area in 1976. Various factors are considered to be related to such transition of this disease. Above all, increace of application of nitrogenous fertilizer, early season and earlier cultivation of rice, introduction of more susceptible "Tongil" varieties etc. must be important factors influencing the outbreak of this disease. 2. Great variations in cultural characteristics-such as mycelial growth rate, color of the medium, amount of the aerial mycelium, shape and color of the sclerotia- and in the pathogenicity of isolates of the pathogen, Thanatephorus cucumeris Dank were observed. The optimum temperature for mycelial growth also varied with isolates, from $25^{\circ}C$ to $30^{\circ}C$. There were not necessarily any correlation between curtural characteristics and pathogenicity of isolates of Thanatephorus cucumens. 3. Mycelial grow th of isolates of Thanatephorus cucumens on the PDA medium were correlated with the air temperatures of the region where the isolates were collected. The isolates from the regions with high temperature grew well on PDA medium at $35^{\circ}C$ than those from the region with low temperature, on the other hand, the isolates from the regions with the low temperature grew well on the same medium at $12^{\circ}C$ than those from the regions with high temperature. 4. Pectin polygalacturonase (PG) and cellulase (Cx) were most active on the 3rd day after inoculation on the leaves of rice plant with Thanatephorus cucumeris, whereas pectin methylestrase (PE) was most active on the 4th day after inoculation. Relationship between the activities of PE of isolates and the strength of pathogenicity of isolates was obtained, but PG and cellulase activities were not correlated with pathogenicity of isolates. 5. The tolerence of sclerotia from in-vitro culture to low temperature varied with their water content, the dried cultural sclerotia were more tolerent than wet ones, Dried cultural sclerotia maintained almost 100% germinability for 45 days at $-20^{\circ}C$, whereas wet sclerotia lost viability at $-5^{\circ}C$. The germination ratio of the sclerotia after overwintering changed from 18% to 70% according to the water content of the test paddy fields and the ratio was low in wet paddy condition. 6. To investigate the host range of this fungi in and near paddy field, 17 weeds were inoculated with fungi. The lesions of sheath blight disease was obserbed on Sagittaria trifolia L., Echinochloa crusgalli P. Beauv., Monochoria vaginal is Presl, Polygonum Hydropiper L., Eclipta prostrata L., Digitaria sanguinalis Scapoli. 7. When the level of nitrogen applied was doubled over standard level, total nitrogen content in rice sheath increased, ami when silicate was applied, starch content in rice sheath decreased, inducing the rice plants more susceptible to sheath blight disease. Increased dressing of potash ferilizer reduced the incidence of sheat blight disease. 8. The percentage of infected stems in the early period increased more in the narrow hill plot than in the wide hill plot, but in the late period this tendency was inversed; the percentage of infected stems as well as severity in the wide hill plot increased more compared to the narrow hill plot, and the disease severity in the one plant per hill plot was also low. The number of stems in the wide hill plot was more than the number of stems in the narrow hill plot. This indicates that the microclimate, such as the relative humidity, in the narrow hill plot was more favorable for the development of this disease. 9. There was a high negative correlation between the disease severity of varieties to the sheath blight and the maturity of the varieties, that is, the early varieties were more susceptible than the late ones, and much-tillering varieties usually showed more infection than less tillering varieties. 10. No relationship was obtained between the percentage of infected stems in the early period and the severity after heading, whereas a distinct relationship was obtained between former and latter after Aug. 10.

  • PDF

The Variation of Natural Population of Pinus densiflora S. et Z. in Korea (III) -Genetic Variation of the Progeny Originated from Mt. Chu-wang, An-Myon Island and Mt. O-Dae Populations- (소나무 천연집단(天然集團)의 변이(變異)에 관(關)한 연구(硏究)(III) -주왕산(周王山), 안면도(安眠島), 오대산(五臺山) 소나무집단(集團)의 차대(次代)의 유전변이(遺傳變異)-)

  • Yim, Kyong Bin;Kwon, Ki Won
    • Journal of Korean Society of Forest Science
    • /
    • v.32 no.1
    • /
    • pp.36-63
    • /
    • 1976
  • The purpose of this study is to elucidate the genetic variation of the natural forest of Pinus densiflora. Three natural populations of the species, which are considered to be superior quality phenotypically, were selected. The locations and conditions of the populations are shown in table 1 and 2. The morphological traits of tree and needle and some other characteristics were presented already in our first report of this series in which population and family differences according to observed characteristics were statistically analyzed. Twenty trees were sampled from each populations, i.e., 60 trees in total. During the autumn of 1974, matured cones were collected from each tree and open-pollinated seeds were extracted in laboratory. Immediately after cone collection, in closed condition, the morphological characteristics were measured. Seed and seed-wing dimensions were also studied. In the spring of 1975, the seeds were sown in the experimental tree nursery located in Suweon. And in the April of 1976, the 1-0 seedlings were transplanted according to the predetermined experimental design, randomized block design with three replications. Because of cone setting condition. the number of family from which progenies were raised by populations were not equal. The numbers of family were 20 in population 1. 18 in population 2 and 15 in population 3. Then, each randomized block contained seedlings of 53 families from 3 populations. The present paper is mainly concerned with the variation of some characteristics of cone, seed, needle, growth performance of seedlings, and chlorophyll and monoterpene compositions of needles. The results obtained are summerized as follows. 1. The meteorological data obtained by averaging the records of 30 year period, observed from the nearest station to each location of populations, are shown in Fig. 3, 4, and 5. The distributional pattern of monthly precipitation are quite similar among locations. However, the precipitation density on population 2, Seosan area, during growing season is lower as compared to the other two populations. Population 1. Cheong-song area, and population 3, Pyong-chang area, are located in inland, but population 2 in the western seacoast. The differences on the average monthly air temperatures and the average monthly lowest temperatures among populations can hardly be found. 2. Available information on the each mother trees (families) studied, such as age, stem height, diameter at breast height, clear-bole-length, crown conditions and others are shown in table 6,7, and 8. 3. The measurements of fresh cone weight, length and the widest diameter of cone are given in Tab]e 9. All these traits arc concerned with the highly significant population differences and family differences within population. And the population difference was also found in the cone-index, that is, length-diameter ratio. 4. Seed-wing length and seed-wing width showed the population differences, and the family differences were also found in both characteristics. Not discussed in this paper, however, seed-wing colours and their shapes indicate the specificity which is inherent to individual trees as shown in photo 3 on page 50. The colour and shape are fully the expression of genetic make up of mother tree. The little variations on these traits are resulted from this reason. The significant differences among populations and among families were found in those characteristics, such as 1000-seed weight, seed length, seed width, and seed thickness as shown in table 11. As to all these dimensions, the values arc always larger in population 1 which is younger in age than that of the other two. The population differences evaluated by cone, seed and seed-wing sizes could partly be attributed to the growth vigorousity. 5. The values of correlation between the characteristics of cone and seed are presented in table 12. As shown, the positive correlations between cone diameter and seed-wing width were calculated in all populations studied. The correlation between seed-wing length and seed length was significantly positive in population 1 and 3 but not in population 2, that is, the r-value is so small as 0.002. in the latter. The correlation between cone length and seed-wing length was highly significant in population 1, but not in population 2. 6. Differences among progenies in growth performances, such as 1-0 and 1-1 seedling height and root collar diameter were highly singificant among populations as well as families within population(Table 13.) 7. The heritability values in narrow sense of population characteristics were estimated on the basis of variance components. The values based on seedling height at each age stage of 1-1 and 1-0 ranged from 0.146 to 0.288 and the values of root collar diameter from 0.060 to 0.130. (Table 14). These heritability values varied according to characteristics and seedling ages. Here what must be stated is that, for calculation of heritability values, the variance values of population was divided by the variance value of environment (error) and family and population. The present authors want to add the heritability values based on family level in the coming report. It might be considered that if the tree age is increased in furture, the heritability value is supposed to be altered or lowered. Examining the heritability values studied previously by many authors, in pine group at age of 7 to 15, the values of height growth ranged from 0.2 to 0.4 in general. The values we obtained are further below than these. 8. The correlation between seedling growth and seed characteristics were examined and the values resulted are shown in table 16. Contrary to our hypothetical premise of positive correlation between 1-0 seedling height and seed weight, non-significance on it was found. However, 1-0 seedling height correlated positively with seed length. And significant correlations between 1-0 and 1-1 seedling height are calculated. 9. The numbers of stomata row calculated separately by abaxial and adaxial side showed highly significant differences among populations, but not in serration density. On serration density, the differences among families within population were highly significant. (Table 17) A fact must be noted is that the correlation between stomata row on abaxial side and adaxial side was highly significant in all populations. Non-significances of correlation coefficient between progenies and parents regarding to stomata row on abaxial side were shown in all populations studied.(Table 18). 10. The contents of chhlorophyll b of the needle were a little more than that of chlorophyll a irrespective of the populations examined. The differences of chlorophyll a, b and a plus b contents were highly significant but not among families within populations as shown in table 20. The contents of chlorophyll a and b are presented by individual trees of each populations in table 21. 11. The occurrence of monoterpene components was examined by gas liquid chromatography (Shimazu, GC-1C type) to evaluate the population difference. There are some papers reporting the chemical geography of pines basing upon monoterpene composition. The number of populations studied here is not enough to state this problem. The kinds of monoterpene observed in needle were ${\alpha}$-pinene, camphene, ${\beta}$-pinene, myrcene, limonene, ${\beta}$-phellandrene and terpinolene plus two unknowns. In analysis of monoterpene composition, the number of sample trees varied with population, I.e., 18 families for population 1, 15 for population 2 and 11 for population3. (Table 22, 23 and 24). The histograms(Fig. 6) of 7 components of monoterpene by population show noticeably higher percentages of ${\alpha}$-pinene irrespective of population and ${\beta}$-phellandrene in the next order. The minor Pinus densiflora monoterpene composition of camphene, myrcene, limonene and terpinolene made up less than 10 percent of the portion in general. The average coefficients of variation of ${\alpha}$-pinene and ${\beta}$-phellandrene were 11 percent. On the contrary to this, the average coefficients of variation of camphene, limonene and terpinolene varied from 20 to 30 percent. And the significant differences between populaiton were observed only in myrcene and ${\beta}$-phellandrene. (Table 25).

  • PDF

Studies on Ecological Variation and Inheritance for Agronomical Characters of Sweet Sorghum Varieties (Sorghum vulgare PERS) in Korea (단수수(Sorghum vulgare PERS) 품종의 생태변이 및 유용형질의 유전에 관한 연구)

  • Se-Ho Son
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.10
    • /
    • pp.1-43
    • /
    • 1971
  • Experiment I: The objective of this study was to know variation in some selected agronomic characters of sweet sorghum when planted in several growing seasons. The 17 different sweet sorghum varieties having various maturities, and plant, syrup and sugar types were used in this study which had been carried out for the period of two years from 1968 to 1969 at Industrial Crops Division of Crop Experiment Station in Suwon. These varieties were planted at an interval of 20 days from April 5 to August 25 both in 1968 and 1969. The experimental results could be summarized as follows: 1. As planting was made early, the number of days from sowing to germination was getting prolonged while germination took place early when planted at the later date of which air temperature was relatively higher. However, such a tendency was not observed beyond the planting on August 25. In general, a significant negative correlation was found between the number of days from sowing to germination and the average daily temperature but a positive correlation was found between the former and the total accumulated average temperature during the growth period. 2. The period from sowing to heading was generally shortened as planting was getting delayed. The average varietal difference in number of days from sowing to heading was as much as 30.2 days. All the varieties were grouped into early-, medium and late-maturing groups based upon a difference of 10 days in heading. The average number of days from sowing to heading was 78.5$\pm$4.5 days in the early-maturing varieties, 88.5$\pm$4.5 days in the medium varieties and 98.5$\pm$4.5 days in the late-maturing varieties, respectively. The early-maturing varieties had the shortest period to heading when planted from July 15 to August 5, the medium varieties did when planted before July 15 and the late-maturing varieties did when planted before June 5. 3. The relationship between the sowing date (x) and number of days from sowing to heading could be expressed in an equation of y=a+bx. A highly positive correlation was found between the coefficient of the equation(shortening rate in heading time) and the average number of days from sowing to heading. 4. The number of days from sowing to heading was shortened as the daily average temperature during the growth period was getting higher. Early-maturing varieties had the shortest period to heading at a temperature of 24.2$^{\circ}C$, medium varieties at 23.8$^{\circ}C$ and late-maturing varieties at 22.9$^{\circ}C$, respectively. In other words, the number of days from sowing to heading was shortened rapidly in case that the average temperature for 30 days before heading was 22$^{\circ}C$ to $25^{\circ}C$. It prolonged relatively when the temperature was lower than 21$^{\circ}C$. 5. There was a little difference in plant height among varieties. In case of early planting, no noticeable difference in the height was observed. The plant height shortened generally as planting season was delayed. Elongation of plant height was remarkably accelerated as planting was delayed. This tendency was more pronounced in case of early-maturing varieties rather than late-maturing varieties. As a result, the difference in plant height between the maximum and the minimum was greater in late-maturing varieties than in early-maturing varieties. 6. Diameter of the stalk was getting thicker as planted earlier in late-maturing varieties. On the other hand, medium or early-maturing varieties had he thickest diameter when they were planted on April 25. 7. In general, a higher stalk yield was obtained when planted from April 25 to May 15. However, the planting time for the maximum stalk yield varied from one variety to another depending upon maturity of variety. Ear]y-maturing varieties produced the maximum yield when planted about April 25, medium varieties from April 25 to May 15 and late-maturing varieties did when planted from April 5 to May 15 respectively. The yield decreased linearly when they were planted later than the above dates. 8. A varietal difference in Brix % was also observed. The Brix % decreased linearly when the varieties were planted later than May 15. Therefore, a highly negative relationship between planting date(x) and Brix %(y) was detected. 9. The Brix % during 40 to 45 days after leading was the highest at the 1st to the 3rd internodes from the top while it decreased gradually from the 4th internode. It increased again somewhat at the 2nd internode from the ground level. However, it showed a reverse relationship between the Brix % and position of internode before heading. 10. Sugar content in stalk decreased gradually as planting was getting delayed though one variety differed from another. It seemed that sweet sorghum which planted later than June had no value as a sugar crop at all. 11. The Brix % and sugar content in stalk increased from heading and reached the maximum 40 to 45 days after heading. The percentage of purity showed the same tendency as the mentioned characters. Accordingly, a highly positive correlation was observed between. percentage of purity and Brix % or sugar content in stalk. 12. The highest refinable sugar yield was obtained from the planting on April 25 in late-maturing varieties and from that on May 15 in early-maturing varieties. The yield rapidly decreased when planted later than those dates. Such a negative correlation between planting date(x) and refinable sugar yield(y) was highly significant at 1% level. 13. Negative correlations or linear regressions between delayed planting and the number of days from sowing to germination. accumulated temperature during germination period, number of days to heading, accumulated temperature to heading, plant height, stem diameter, stalk weight, Brix %. sugar content, refinable sugar yield or Purity % were obtained. On the other hand, highly positive correlations between the number of days from sowing to heading(x) and Brix %, sugar content, purity %, refinable sugar yield, plant height or stalk yield, between Brix %(x) and purity %, refinable sugar yield or stalk yield, between sugar content(x) and purity% or refinable sugar yield(y), between purity %(x) and refinable sugar yield and between daylength at heading(x) and Brix %. number of days from sowing to heading, sugar content, purity % or refinable sugar yield (y), were found, respectively. Experiment II: The 11 varieties were selected out of the varieties used in Experiment I from ecological and genetic viewpoints. Complete diallel cross were made among them and the heading date, stalk length, stalk yield, Brix %, syrup yield, combining ability and genetic behavior of F$_1$ plants and their parental varieties were investigated. The results could be summarized as follows: 1. In general, number of days to heading showed a partial dominance over earliness or late maturity or had a mid-value, though there were some specific combinations showing a complete dominance or transgressive segregation in maturity. Some combinations showed relatively high general or specific combining abilities in maturity. Therefore, a 50 to 50 segregation ratio in heading date could be estimated in this study and it might be positive to have a selection in early generation since heritability of the character was relatively high. 2. A vigorous hybrid vigor was observed in stalk length. A complete or partial dominant effect of long stalk was obtained. The general combining ability and specific combining ability of stalk length were generally high. Long and short stalks segregated in a ratio of 50:50 and its heritability was relatively low. 3. Except for several specific combinations, high stalk yield seemed to be partial dominant over the low yield. Some varieties demonstrated relatively high general as well as specific combining abilities. It was assumed that several recessive genes were involved in expression of this character. The interaction among regulating recessive genes was also obtained. Accordingly, the heritability of stalk yield seemed to be rather low. 4. The Brix % of hybrid plants located around mid-parental value though some of them showed much higher or lower percentage. It could be explained by the fact that such behavior might be due to partial dominance of Brix %. The varieties with, relatively higher Brix % were high both in general. and specific combining abilities. Therefore, it could be recommended to use the varieties having higher sugar content in order to develop higher-sugar varieties. 5. The syrup yield seemed to be transgressively segregated or completely dominant over low yield. Hybrid vigor of syrup yield was relatively high. No-consistent relationship between general combining ability and specific combining ability was observed. However, some cases demonstrated that the varieties with relatively higher general combining ability had relatively lower specific combining ability. It was assumed that the frequencies of dominant and recessive alleles were almost same.

  • PDF