• Title/Summary/Keyword: Grouting injection test

Search Result 104, Processing Time 0.026 seconds

A Study on the Grouting for the Underpinning of Open Caisson of Existing Bridge (기존 교량구조물의 유지관리를 위한 우물통 기초 보강주입에 관한 연구)

  • Chun, Byung-Sik;Yeoh, Yoo-Hyeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.131-138
    • /
    • 2000
  • In this study, physical and engineering properties of ordinary portland cement and microcement were investigated to verify reinforcing effect of underpinning of open caisson foundation by using microcement grouting. Laboratory injection tests such as infiltration and injection in case of seepage for the stream bed soil at ${\bigcirc}{\bigcirc}$ Great Bridge in Seoul were carried out. Field injection tests to reinforce open caisson foundation at ${\bigcirc}{\bigcirc}$ Great Bridge were performed and the ability of application by microcement grouting was evaluated. From the test results, physical and engineering properties of microcement are better than those of ordinary portland cement. Also, the ability of infiltration and solidity in case of seepage is better than that of ordinary portland cement. Therefore, it is concluded that microcement is an excellent material to reinforce open caisson foundation of the existing bridge structure under the water and can be used as underpinning material of general foundations.

  • PDF

Determining of Ground Condition Criteria for Dam Reinforced RIM Grouting (댐체 강화 RIM부 그라우팅을 위한 지반상태 기준 결정)

  • Han, Kiseung;Lee, Donghyuk;Park, Duhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.181-186
    • /
    • 2022
  • Dam slope RIM is a highly important contact interface where the main body and the base surface are connected. In general, when the grouting for the slope of the dam structure is designed, it is planned using limited data (drilling, geological map, etc.). This makes it very difficult to accurately consider the original ground characteristics of the slope RIM grouting target, In addition, when the grouting volume planned during the design is drilled and injected into the original ground where the waterstop is secured, there is a possibility that the original ground with the waterstop is disturbed and the effect of the waterstop is rather diminished. In order to overcome such problems, it is more suitable to first consider geological conditions and determine whether to perform optimal grouting on the original ground through on-site repair tests before performing RIM grouting. In this paper, to determine the grouting of the RIM unit, a pilot hole water pressure test was performed on the rock of the slope in the target section. The analysis shows grouting volume of 1 Lugeon or less, and the cement injection amount also shows the injection result of 1 kg/m or less. In this case, performing grouting is rather counterproductive. This result can be evaluated through a rock of which some degree of order of mass is secured, as it is a dam design standard of 1 Lugeon or less when analyzed, using the results of visual observation and geological map creation during slope cutting. Therefore, in conclusion, it is preferable to make the decision for using RIM grouting on the slope of the dam body structure, based on 1 Lugeon in a rock state, and the cement injection amount also at 1 kg/m.

Study on Applicability of Simultaneous Multiple Compaction Grouting Method in Soft Clay Ground (점성토 연약지반에서의 다중 동시주입 컴팩션 그라우팅 공법 적용성 연구)

  • Lee, Hyobum;Jung, Hyun-Seok;Jung, Eui-Youp;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.779-788
    • /
    • 2019
  • The compaction grouting method is one of the conventional ground improvement methods, which consolidates and compacts the surrounding ground through the injection of grout materials with low mobility. Injecting the grout into the ground can improve the soil properties, as well as form a composite of soil-grout columns. However, the conventional grout pumping is not applicable to handle multiple injection holes at the same time, which may diminish its constructability when the construction time is not enough. This paper proposes a simultaneous multiple compaction-grouting method using a new pump system developed to cover up simultaneously three injection holes at a time. Field injection tests with a single injection hole and with triangular arrangement of injection holes were conducted to evaluate the applicability of the proposed method to soft clay ground. In addition, a series of standard penetration tests (SPTs) were performed to assess the efficiency of each arrangement in improving the soft ground. It is noted from the in-situ test results that the interval distances between injection holes and the elapse time for ground stabilization are the crucial factors governing the applicability of the simultaneous multiple compaction-grouting method to improve the soft clay ground.

An Experimental Study on Grouting Effect for Ground Reinforcement (지반보강 그라우팅 효과에 관한 실험적 연구)

  • Park, Yong-Won;Lee, Goo-Young;Park, Jong-Ho;Hong, Sung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.399-406
    • /
    • 2004
  • This paper is experimental study on the effect of improved soil strength which was grouted by pressure grouting method for prevent collapse the tunnel's face during excavate tunnel. This study performs to investigate the proper grouting pressure and grouting method through pressure grouting laboratory model tests using loose dense sandy soil using specially designed and fabricated device($180cm{\times}220cm{\times}300cm$) under changing condition of injection in this test The investigation is carried out through measuring the size and shape of grout bulb, elastic modulus by pressure-meter test Elastic modulus was estimated using relation stress with strain which is result the uni-direction compressive strength test for cured grouted bulb under water during 28days. From these test results, the amount of increased elastic modulus of grouted zone was suggested.

  • PDF

Analysis of grout injection distance in single rock joint (단일절리 암반에서 그라우팅 주입거리 분석)

  • Ji-Yeong Kim;Jo-Hyun Weon;Jong-Won Lee;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.541-554
    • /
    • 2023
  • The utilization of underground spaces in relation to tunnels and energy/waste storage is on the rise. To ensure the stability of underground spaces, it is crucial to reinforce rock fractures and discontinuities. Discontinuities, such as joints, can weaken the strength of the rock and lead to groundwater inflow into underground spaces. In order to enhance the strength and stability of the area around these discontinuities, rock grouting techniques are employed. However, during rock grouting, it is impossible to visually confirm whether the grouting material is being smoothly injected as intended. Without proper injection, the expected increases in strength, durability, and degree of consolidation may not be achieved. Therefore, it is necessary to predict in advance whether the grouting material is being injected as designed. In this study, we aimed to assess the injection performance based on injection variables such as the water/cement mixture ratio, injection pressure, and injection flow using UDEC (Universal Distinct Element Code) numerical program. Additionally, numerical results were validated by the lab experiment. The results of this study are expected to help optimize variables such as injection material properties, injection time, and pump pressure in the grouting design in the field.

A Study on Numerical Technique of the Hardened Grout Formed by Grouting (약액주입 시 형성된 고결체의 수치해석 기법 연구)

  • Lee, Jong-Hwi;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.27-37
    • /
    • 2011
  • Recently, pressure grouting is widely being used in construction site for strength improvement of ground and water proof, reinforcement and so on. It is necessarily required to estimate an appropriate injection pressure and injection time for economical and reasonable construction in the site through the size and shape of the hardened grout measured according to ground condition. However, sampling for the hardened grout is time-consuming and needs high cost on preliminary test in the site. The system which could predict the size and shape of the hardened grout does not exist until now. Thus, numerical method based on VOF method and porous model was used for the calibration chamber injection test with injection pressure (50 kPa, 100 kPa, 150 kPa) in this study. The results indicate that the numerical technique based on VOF method and porous model among CFD analysis is expected to be a basic study for the prediction of the behavior and solidification of pressure grouting.

A Study on the Grouting Effect of Ultrafine Cement in Rock Ground (초미립자 시멘트의 암반지반 그라우팅 주입효과에 관한 연구)

  • An, Jun-Hee;Park, Choon-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.279-286
    • /
    • 2018
  • The grouting method is to reinforce the ground by injecting the chemical solution for the strengthening of the ground. Cement grouting material has usually used portland cement for centuries ago, but the cement particle size is large and the injection effect is limited. This study analyzes the effect of ultrafine cement grouting in rock ground using 3S-1 grouting in rock ground and ordinary Portland cement (OPC). The results of tests were compared and analyzed from the Lugeon test, bore loading test (P.M.T.), and injection (P-Q) test. The use of ultrafine cement (3S-1) had a higher effect (K, 10-6cm/sec) than OPC. The reinforcement effect of 3S-1 was also confirmed. Ultrafine cement (3S-1) was 4~9 times more injectable than OPC. Therefore, it is more advantageous to use ultrafine cement (3S-1) than OPC.

Impermeability of Earth Natural Grouting Method (ENG 공법의 차수효과 연구)

  • Jung, Min-Hyung;Kim, Yong-Sik;Jung, Chun-Hak;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.836-843
    • /
    • 2009
  • The Water Glass grouting method has been applied frequently to impermeable grouting in practice. But there is raising problems which are durability decrease by passage time and environmentally adverse effect. So, Earth Natural Grouting method which uses micro cement is developed to overcomes the problems of the Water Glass grouting method. And it is displayed ground injection extent like Water Glass grouting method. For verifying impermeability of ENG, it is carried out a triaxial permeability test about manufacturing specimen of ENG, SGR method which is a presentative Water Glass grouting method. Although Coefficient of permeability, k, of SGR is measured a little high than k of ENG whose value is $a{\times}10^{-6}cm/sec$, the value of ENG belong to impermeable rage. And, k of SGR shows relatively rapid increase according to cure time due to durability decrease of water glass. Also, in-situ test result of ENG has similar value with SGR method for similar ground.

  • PDF

A Study on the Ground Improvement by Compaction Grouting System (CGS에 의한 기초지반보강에 관한 연구)

  • 천병식;권형석
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.4
    • /
    • pp.9-19
    • /
    • 1999
  • The use of compaction grouting evolved in 1950's to correct structural settlement of buildings. Over the almost 50 years, the technology has been developed and is currently used in wide range of applications. Compaction grouting, the injection of a very stiff, 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. Major applications of compaction grouting include densifying loose soils or fill voids caused by sinkholes, poorly compacted fills, broken utilities, improper dewatering, or soft ground tunneling excavation. Other applications include preventing liquefaction, re-leveling settled structures, and using compaction grout bulbs as structural elements of minipiles or underpinning. In this paper, on the basis of the case history constructed in this year, a study has been performed to analyze the basic mechanism of the compaction grouting. Also, the effectiveness of the ground improvement and the bearing capacity of the compaction pile has been verified by the Cone Penetration Test(CPT) and Load Test. Relatively uniform compaction grouting column could be maintained by planning the quality control in the course of grouting. And, the Qualify Control Plan has been conceived using grout pressure, volume of grout and drilling depth.

  • PDF

A Fundamental Study on Application Eco Friendly Grouting Material for Old Aged Reserve Reinforcement (노후 저수지 보강을 위한 환경 친화적 그라우팅 주입재 적용에 관한 기초연구)

  • Song, Sang-Hwon;Jeon, Ki-Pyo;Lim, Yang-Hyun;Seo, Se-Gwan
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.2
    • /
    • pp.35-42
    • /
    • 2019
  • There are 17,427 reservoirs in Korea, of which about 96% were built before the mid 1980s. Therefore, aging is severe and reinforcement are necessary. In addition, aged reservoirs, which are more than 50 years old, account for 70% of the total. Therefore, there is a problem such as the collapse of the reservoir and the decrease of the storage capacity due to progress of aging with time. The grouting method using cement is mainly used as maintenance and reinforcement method of old reservoir. However, the grouting method using cement has engineering and environmental problems. In order to solve the engineering and environmental problems of cement grouting method, an eco-friendly grouting material was developed that mixes circular resource grouting binder, high molar ratio sodium silicate and colloidal silica. The engineering and environmental properties of the developed injection materials were evaluated by conducting gel time, homo-gel strength, sea water resistance test and environmental stability evaluation. Also, examined the possibility of replacing OPC existing aged reservoir reinforcement methods. As a result, it was found out that it was better than the conventional cement method in terms of engineering and environment. However, since this study is the result of laboratory test, it is necessary of verify the application at field of aged reservoir.