• Title/Summary/Keyword: Grout

Search Result 504, Processing Time 0.021 seconds

Effect of Vibratory Injection on Grout Permeation Characteristics (진동주입이 그라우트재의 침투 특성에 미치는 영향 연구)

  • Lee, Mun-Seon;Kim, Jong-Sun;Lee, Sung-Dong;Choi, Young-Joon;Yang, Jae-Man;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.37-47
    • /
    • 2010
  • To improve the grout penetration characteristics, a vibratory grout injection technique was adopted in this study. It is a technique of grout injection in which an oscillating pressure is added to the steady-state pressure as an injection pressure. By applying the vibration during grout injection, cement particles will become less adhesive and the clogging tendency will be decreased. A series of pilot-scale chamber tests were performed to verify the enhancement of the groutability by applying the vibratory grout injection; assessment on the change of the lumped parameter $\theta$ which represents a barometer of clogging phenomenon was made. Moreover, the effect of vibratory grout injection through the joint was also investigated using artificially made rock joints. Experimental results as well as analytical results show that the grout penetration depth can be substantially improved by vibratory grouting. Moreover, it was found that enhancement of the permeation grouting due to vibratory injection is more dominant at grouting pressure less than 400 kPa.

Mechanical and Electrical Properties of Self-sensing Grout Material with a High-Volume Ultrafine Fly Ash Replacement (초고분말 플라이 애시를 다량 치환한 자기감지형 그라우트재의 역학적 및 전기적 특성)

  • Lee, Gun-Cheol;Kim, Young-Min;Im, Geon-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.215-226
    • /
    • 2024
  • This study presents an experimental investigation into the performance of self-sensing grout formulated with a high volume of ultra-fine fly ash(UHFA). To explore the potential benefits of alternative cementitious materials, the research examined the effect of substituting UHFA with equal parts of blast furnace slag(BFS) fine powder. Both UHFA and BFS are byproducts generated in significant quantities by industrial processes. The evaluation focused on the fresh properties of the grout, including its flow characteristics, as well as the hardened properties such as compressive strength, dimensional stability(length change rate), and electrical properties. The experimental results demonstrated that incorporating UHFA resulted in a substantial reduction in the plastic viscosity of the grout, translating to improved flowability. Additionally, the compressive strength of the UHFA-modified grout surpassed that of the reference grout(without UHFA substitution) at all curing ages investigated. Interestingly, the electrical characteristics, as indicated by the relationships between FCR-stress and FCR-strain, exhibited similar trends for both grout mixtures.

Development and Application of Activated Silicate for Chemical Grouting (지반주입용 활성 실리케이트 약액 (ASG) 의 개발 및 적용)

  • 천병식;류동성;조산연
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.131-136
    • /
    • 1999
  • In this study, novel activated silicate grout solution for injection grouting was prepared by the reaction of ordinary waterglass with alkaline earth metal salts mixture by means of the high-speed stirring method with strong shearing force, and its chemical and physical properties were investigated. The variation of its gelation time plotted with the amount of dilution water showed that this novel silicate had better gelation characteristics in comparison with ordinary waterglass. And some other engineering characteristics of this grout such as durability and mechanical properties were investigated experimentally. The whole experimental results established that this novel silicate grout was a good alternative with an existing ordinary waterglass grouting method.

  • PDF

An Empirical application of high-performance cement grout for ground heat exchanger (지중열교환기용 고성능 시멘트 그라우트 실증 적용)

  • Yang, Hee-Jung;Lee, Dong-Chul;Jeon, Joong-Kyu;Seo, Shin-Seok;Choi, Yong-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.201.1-201.1
    • /
    • 2011
  • Ground heat exchanger is the most important part which than 14% of the cost of construction and the performance of Ground heat exchanger is depended on it. Grout is inserted into the hole to the ground fixed and serves to enhance the thermal conductivity. So the research and development is needed. We were using cement grout. The result of the test thermal conductivity is 3.14 W/mK. It is much better than the existing grout is the thermal conductivity. The developed materials was examined by applying the grout in the field.

  • PDF

3- D Analysis of Concrete Slab Track System (콘크리트 슬래브 궤도의 3차원 거동해석)

  • Kim, Jeong-Il;Jang, Seung-Yup
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.955-960
    • /
    • 2004
  • In this study, three dimensional FE analysis of concrete slab track has been performed in order to develop the realistic design of precast concrete slab track. The precast slab track system including the precast concrete slab panel and the grout layer is modeled using the three dimensional solid element with crack softening effect. The input load is computed from the one dimensional beam element model constituting the rail and several discrete springs. To investigate the effect of the longitudinal connection of slab panels, two different systems-continuous and discrete systems - are modeled. The analytical results show that the stresses of both the slab panel and the grout layer are in the range of linear elastic, and, at the interface between two adjacent panels, the primary stresses of the grout layer of the discrete system are higher than those of the continuous system. However, The overall stress levels of the grout layer are very low relative to the strength of th grout.

  • PDF

Durability Evaluation of Grout in Cablebolt System (케이블볼트 충전재의 내구성 평가)

  • Choi, Jung-In;Kim, Won-Keun;Jeon, Jae-Hyun;Lee, Seok-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.553-561
    • /
    • 2010
  • Like the shotcrete can be deteriorated by chemical compounds as service years increase, the grout which is used to fasten the cablebolt(rockbolt) system in the underground structures also can be deteriorated by chemical compounds such as sulphate and/or chloride contained in groundwater during service years. This can induce issues on the long term durability of cablebolt(rockbolt) system and consequently on the stability of underground structures. In this study, the deteriorations of long term durability of cement mortar grout by each chemical compound of sulphate or chloride are studied experimentally and also complex deterioration by the mix of sulphate and chloride is investigated. Based on the results obtained in this study, the characteristics and prediction of deterioration of long term durability of cement mortar grout for cablebolt(rockbolt) system are suggested.

  • PDF

The Effect of PC-Based SP on Rheology and Strength of High Strength Grout (PC계 유동화제가 고강도 그라우트에 유동성 및 강도에 미치는 영향)

  • Kim, Beomhwi;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.148-149
    • /
    • 2022
  • The use of high-strength grout applied for facility foundations and bridges has recently been expanding in offshore wind farm. Wind farm in offshore require bearing capacity for horizontal loads such as wind, waves, and earthquakes. In order to improve the bearing force of the base part, sufficient fluidity and a certain strength should be ensured so that the high-strength grout is densely charged in the narrow space of the connection part. Therefore, in this study, changes in fluidity and strength according to the ratio of PC-based superplasticizer mixed in high-strength grout were measured. As a result, as the ratio of the superplasticizer increased, fluidity increased and strength decreased. However, the strength did not decrease when the ratio of superplasticizer was above a 0.005. Therefore, it was confirmed that the fluidity change was remarkable when a 0.005 ratio of PC-based superplasticizer were added.

  • PDF

Effect of Underwater Pumping on the Strength of High-Strength Grout (수중펌프압송이 고강도 그라우트의 강도에 미치는 영향)

  • Kim, Beom-Hwi;Yi, Chong-Ku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.193-194
    • /
    • 2022
  • The use of high-strength grout for facility foundations and bridges has recently been expanding in offshore wind farms. Offshore wind farms require a bearing capacity for horizontal loads such as wind, waves. Therefore, in this study, the strength of the high-strength grout discharged through pump pressure was measured and compared with the existing strength to secure the strength after the underwater pump pressure of the high-strength grout used in the offshore wind connection. The compressive strength measurement showed that the strength difference at each position of the core specimen was 1% higher than that of the other specimens, and there was almost no change in the strength according to the height. The strength of the core specimen decreased by 23% compared to the existing strength, which is similar to the result of this study because the strength of the core specimen decreased by approximately 25% compared to the general specimen according to related research. Therefore, it is believed that there is no decrease in strength due to underwater pumping.

  • PDF

Effect of Marine Environment and Underwater Construction on Mechanical Properties of High Strength Grout (해상환경 및 수중타설이 고강도 그라우트의 역학적 성능에 미치는 영향)

  • Kim, Beom-Hwi;Son, Da-Som;Yi, Chong-Ku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.89-90
    • /
    • 2023
  • In this study, grout was poured into seawater to confirm the effect of similar marine environment and underwater erosion on the mechanical performance of domestically produced high-performance grout and compared with the existing strength. As a result of the compressive strength measurement, the specimen that simultaneously performed underwater drilling and seawater curing showed slow initial strength expression in both H1 and H2, and from the 7th day, it was confirmed to be within 2% of the existing intensity. It is believed that both grout were caused by disturbance with water during underwater drilling, and the same strength was subsequently shown as the existing strength.

  • PDF

A study on the improvements of geotechnical properties of in-situ soils by grouting

  • Chang, Muhsiung;Mao, Tze-wen;Huang, Ren-chung
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.527-546
    • /
    • 2016
  • This paper discusses improvements of compressibility, permeability, static and liquefaction strengths of in-situ soils by grouting. Both field testing and laboratory evaluation of the on-site samples were conducted. The improvement of soils was influenced by two main factors, i.e., the grout materials and the injection mechanisms introduced by the field grouting. On-site grout mapping revealed the major mechanism was fracturing accompanied with some permeation at deeper zones of sandy soils, where long-gel time suspension grout and solution grout were applied. The study found the compressibility and swelling potential of CL soils at a 0.5 m distance to grout hole could be reduced by 25% and 50%, respectively, due to the grouting. The effect on hydraulic conductivity of the CL soils appeared insignificant. The grouting slightly improved the cohesion of the CL soils by 10~15 kPa, and the friction angle appeared unaffected. The grouting had also improved the cohesion of the on-site SM soils by 10~90 kPa, while influences on the friction angle of soils were uncertain. Liquefaction resistances could be enhanced for the sandy soils within a 2~3 m extent to the grout hole. Average improvements of 40% and 20% on the liquefaction resistance were achievable for the sandy soils for earthquake magnitudes of 6 and ${\geq}7.5$, respectively, by the grouting.