• Title/Summary/Keyword: Group-Delay Equalizer

Search Result 13, Processing Time 0.027 seconds

A Dual-Mode Narrow-Band Channel Filter and Group-Delay Equalizer for a Ka-Band Satellite Transponder

  • Kahng, Sung-Tek;Uhm, Man-Seok;Lee, Seong-Pal
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.379-386
    • /
    • 2003
  • This paper presents the design of a narrow-band channel filter and its group-delay equalizer for a Ka-band satellite transponder. We used an 8th order channel filter for high selectivity with an elliptic-integral function response and an inline configuration. We designed a 2-pole, reflection-type, group-delay equalizer to compensate for the steep variation of the group-delay at the output of the channel filter, keeping the thermal stability at ${\pm}7$ ns of group-delay variation at the band edges over 15-55$^{\circ}C$. We devised a new tuning technique using short-ended dummy cavities and used it for tuning both the filter and equalizer; this removes the necessity of additional tuning after the cavities are assembled. Through measurement, we demonstrate that the group-delay-equalized filter meets the equipment requirements and is appropriate for satellite input multiplexers.

  • PDF

Design and Realization. of the Dual-mode Channel Filter and Group-Delay-and-Amplitude Equalizer for the Ka-band Satellite Transponder Subsystem

  • Sungtek Kahng;Uhm, Man-Seok;Lee, Seong-Pal
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.140-146
    • /
    • 2003
  • In this paper, the design of a channel filter and its group-delay-and-amplitude equalizer is carried out for the Ka-band satellite transponder subsystem. The 8th order dual-mode filter is employed for high selectivity around the band-edges with an elliptic-integral function response and has an in-line configuration. The 2-pole, reflection-type, group-delay equalizer is designed and manufactured to reduce the group-delay and amplitude variation, which can be large for such a high order filter. It is noted that in both the filter and equalizer, adopting the dual-mode coupling mechanism leads to less mass and volume. Through measurement, the performance of the realized group-delay-equalized filter is shown to meet the equipment requirements and to be appropriate for the satellite input multiplexer.

The Implementation of Group Delay Equalizer and Its Performance Evaluation for Point-to-Point Digital Radio Relay System

  • Suh, Kyoung-Whoan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.8
    • /
    • pp.1444-1454
    • /
    • 2000
  • The implementation of IF group delay equalizer and its performance are presented for radio relay system applications, and measured results are in good agreement with the simulated ones based upon analytical formulations. For waveguide filter of 40㎒ channel spacing, equalized delay accuracy of about +/- 2.0nsec can be obtained only by constructing 4 stage delay circuits, which provides good performance in system BER curves compared with no filter case, and the difference is less than 1.0㏈ at $10^{-12}$ BER. So this scheme with simple hardware design can be used for correcting the distorted group delays mainly caused by wavegiude filters. To evaluate the designed group delay equalizer, various simulated and experimental results are shown here in conjunction with STM-1 signal of co-channel 64-QAM digital radio relay system.

  • PDF

Type-Based Group Delay Equalizer Considering the Nonlinear Phase Distortion of HPA (HPA의 비선형 위상 왜곡을 고려한 타입기반 군 지연 등화기)

  • Kim, Yongguk;Jo, Byung Gak;Baek, Gwang Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.895-902
    • /
    • 2012
  • In this paper, we propose a novel equalizer to compensate for the group delay including AM/PM nonlinear distortion characteristics by the nonlinear power amplifier (PA). The group delay characteristic is a nonlinear non-constant time delay that appears differently depending on each frequency component. The phase distortion by AM/PM characteristics arising from the power amplifier is a major factor to increase group delay. By the group delay distortion, the signal in the constellation expands and is rotated. Considering the problem mentioned above, the nonlinear time delay that appears differently depending on each frequency component is classified as a static group delay and AM/PM characteristic of PA, the different phase transitions depending on the size of input signal as a dynamic group delay. Static group delay estimates and compensate for phase distortions in the frequency domain with type-based method and dynamic group delay compensates for phase rotation in the time domain. We confirmed that the group delay compensation techniques were enough to compensate the group delay characteristics including AM/PM characteristics of the power amplifier.

Hybrid of SA and CG Methods for Designing the Ka-Band Group-Delay Equalized Filter (Ka-대역 군지연-등화 여파기용 SA 기법과 CG 기법의 하이브리드 설계 기법)

  • Kahng, Sungtek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.775-780
    • /
    • 2004
  • This paper describes the realization of the Ka-band group-delay equalized filter desisted with the help of a new hybrid method of Simulated Annealing(SA) and Conjugate Gradient(CG), to be employed by the multi-channel Input Multiplexer for a satellite use, each channel of which comprises a channel filter and a group-delay equalizer. The SA and CG find circuit parameters of an 8th order elliptic function filter and a 2-pole equalizer, respectively. Measurement results demonstrate that the performances of the designed component meet the specifications, and validate the design methods.

A Design of Planner Linear Group Delay Equalizer (평면형 군위상 지연 선형화기의 설계)

  • Kwonn, Hyuk-Moon;Choi, Won-Kyu;Hwang, Hee-Yong;Choi, Kyung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.496-500
    • /
    • 2003
  • In This paper, a pole-zero optimized design method for multi-layed planar interdigital stripeline linear group delay bandpass filter with tap input port is presented. As a design example, a four-pole group delay filter with center frequency of 2.14GHz, bandwidth of 160MHz, and group delay variation of ${\pm}0.1nS$ for LTCC technology or multilayerd PCB technology is designed. In the design process, as well the whole structure is not necessary to be simulated, and within three times of optimizing process we have good result as well. This design method could be useful for controlling error correction of manufacturing process as well as design stage.

  • PDF

A Study on Narrow-Band Dual-Mode Channel Filter and Equalizer for Ku band Satellite Transponder (Ku 대역 위성 중계기용 이중모드 협대역 채널 여파기 및 등화기에 관한 연구)

  • 이주섭;엄만석;강승택;박상준;염인복;이성팔
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.372-378
    • /
    • 2002
  • In this paper, a narrow-band waveguide channel fitter has been designed and realized for Ku band satellite transponder. Group-delay and amplitude variations of the channel filter have been minimized using a 2-pole reflection type equalizer. The channel filter has been designed to have the 8-pole elliptic response for high frequency selectivity. Dual-mode technique has been adopted for reducing mass and volume of the channel filter and equalizer. The channel filter and equalizer have shown good performance for satellite transponder.

An Adaptive IIR Pre-equalizer for Terrestrial DTV Transmitters (지상파 DTV 송신기를 위한 적응 IIR 전치등화기)

  • Kim Hyoung-Nam;Kim Wan-Jin;Kwon Dae-Ken
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.328-336
    • /
    • 2006
  • A novel pre-equalization method for terrestrial DTV transmitters is presented. A pre-equalizer has been used in transmitters to correct group delay and amplitude distortions caused by a channel filter. In the proposed pre-equalizer, an equation-error adaptive IIR filtering scheme is adopted unlike the conventional pre-equalization using FIR filtering schemes. The pole-zero modelling property of IIR filters improves the signal-to-noise ratio and may deal with diverse linear distortions existing in DTV transmitters as well as the channel filter distortion. Simulation results show that the proposed IIR pre-equalizer performs better than the FIR pre-equalizer in terms of the residual mean-square error.

A Study on the Synthesis of a Self-Equalized Dual-Passband Filter (군지연 등화된 두 개의 통과대역을 갖는 필터의 합성에 관한 연구)

  • Lee Juseop;Uhm Man Seok;Park Jong Heung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.19-25
    • /
    • 2005
  • This paper describes a synthesis method for a self-equalized dual-passband filter. Compared to conventional dual-passband filter, a self-equalized dual-passband filter can reduce BER(bit error rate) in digital data communications and does not need an external equalizer for group-delay equalization. To validate the synthesis technique, a 10-pole dual-mode dual-passband filter which has two self-equalized 5-pole elliptic response passband is synthesized.

The Design of Cavity Filter to enhance the Group Delay characteristics for 5G Mobile Communication Repeater (군 지연 특성을 개선한 5G 이동통신 중계기용 캐비티 필터의 설계)

  • Yoo, Soo-Hyung;Jin, Duck-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1032-1039
    • /
    • 2022
  • In this paper, we designed and implemented a cavity bandpass filter combined with a cross-coupling equalizer structure to enhance Group delay for 5G mobile network repeater, which can replace the SAW (Surface Acoustic Wave) type bandwidth filter used in the existing mobile communication system. Using the 3D EM simulation tool (HFSS), the resonance frequency, the coupling coefficient between resonators, and external quality coefficient between resonators were calculated. Based on this, a 12th bandpass filter was constructed to have attenuation characteristics of more than 20dB at the edge end of both sides of the band with a metal cavity structure with a frequency band of 3500MHz to 3600MHz and bandwidth of 97.85MHz. The designed bandpass filter satisfies the group delay time requirement for the 5G mobile communication standard and the in-band and out-band frequency responses.