• Title/Summary/Keyword: Group Equivariant CNN

Search Result 1, Processing Time 0.018 seconds

Comparative Analysis of CNN Techniques designed for Rotated Object Classifiation (회전된 객체 분류를 위한 CNN 기법들의 성능 비교 분석)

  • Hee-Il Hahn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.181-187
    • /
    • 2024
  • There are two kinds of well-known CNN methods, the group equivariant CNN and the CNN using steerable filters, which have excellent classification performances for randomly rotated objects in image space. This paper describes their mathematical structures and introduces implementation methods. We implement them, including the existing CNN, which have the same number of filters, then compare and analyze their performances by simulating them with the randomly rotated MNIST. According to the experimental results, the steerable CNN, which shows a classification improvement over the others, has a relatively small number of parameters to learn, so performance degradation is relatively small even when the size of the training dataset is reduced.