• Title/Summary/Keyword: Groundwaters

Search Result 152, Processing Time 0.023 seconds

Hydrochemistry, Isotopic Characteristics, and Formation Model Geothermal Waters in Dongrae, Busan, South Korea (부산 동래 온천수의 수리화학 및 동위원소 특성, 생성모델 연구)

  • Yujin Lee;Chanho Jeong;Yongcheon Lee
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.229-248
    • /
    • 2024
  • This investigated the hydrogeochemical and isotopic characteristics of geothermal waters, groundwaters, and surface waters in Dongrae-gu, Busan, South Korea, in order to determine the origins of the salinity components in the geothermal waters, and their formation mechanisms and heat sources The geothermal waters are Na-Cl-type, distinct from surrounding groundwaters (Na-HCO3- and, Ca-HCO3- (SO4, Cl)-type) and surface waters (Ca-HCO3(SO4, Cl)-type). This indicates the geothermal waters formed at depth as compared with the groundwaters. δ18O and δD values of the geothermal waters are relatively depleted as compared with the groundwaters, due to altitude effects and deep circulation of the geothermal waters. Helium and neon isotope ratios (3 He/4He and, 4He/20Ne) of the geothermal waters plot on a single mixing line between mantle (3He = 3.76~4.01%) and crust (4He = 95.99~96.24 %), indirectly suggesting that the heat source is due to the decay of radioactive elements in rocks. The geothermal reservoir temperatures were calculated using the silica-enthalpy and Giggenbach models, yielding values of 82~130℃, and the depth of the geothermal reservoir is estimated to be 1.7~2.9 km below the surface. The correlation between Cl/Na and Cl/HCO3 for the Dongrae geothermal waters requires the input of salty water. The supply of saline composition is interpreted due to the dissolution of residual paleo-seawater.

A Study on the Distribution Characteristics of Heavy Metal Concentrations in Environment around Abandoned Mines (폐금속광산 주변환경의 중금속 오염분포특성 연구)

  • 이강혁;정연훈;김병록;박진호;정종필;박현구;김요용
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.1
    • /
    • pp.17-23
    • /
    • 2004
  • This study was investigated the distribution characteristics of heavy metal concentrations in soils around abandoned mines in Pochon city. The abandoned mines were Youngjung, Yongsog and Pochon. The results were as follows: 1) Heavy metal mean concentrations in minewastes were detected Cr 100.119 mg/kg, Cu 189.400 mg/kg in Youngjung mine, Cr 198.440 mg/kg, As 160.480 mg/kg in Yongsog mine and Cr 84.680 mg/kg, Zn 50.280 mg/kg in Pochon mine. 2) The mean concentrations in soils which is around mines were Cu 62.351 mg/kg in Youngjung mine, and As 95.024 mg/kg, Hg 11.279 mg/kg in Yongsog mine. All materials in Pochon mine were detected low level. 3) The concentrations of heavy metal showed low or not detected in water system (groundwaters, streams and sediments).

창원지역 지하수의 수질특성

  • 김무진;함세영;황한석;성익환
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.191-193
    • /
    • 2001
  • This paper presents the result of groundwater analysis in Changwon area and the characteristics of the groundwater properties. Changwon city conducted groundwater analysis at 551 sites in 1996 and 1997. The water quality is suitable as groundwater use at 466 sites (84.6 %) and exceeds maximum contaminant levels (MCLs) at 85 sites (15.4 %). Major contaminants are total bacteria, coliform and nitrate-N. DNAPLs, e.g. TCE and PCE are detected in the areas of industrial complex and residence. The detection of TCE and PCE is due to organic solvents from manufacturing companies. They are also derived from laundries, Photographer's studios, septic tanks, etc. In addition, fifty groundwater samples were analyzed. Iron, manganese, zinc, copper, lead, aluminum and fluorine are detected in nearly all the groundwater samples. The groundwaters shown on the Piper diagram mostly belong to Ca-HCO$_3$ type.

  • PDF

Hydrochemistry of an alluvial aquifer in the Cheonan area: role of the pyrite oxidation on denitrification

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Gi-Tak;Heo, Chul-Ho;Kim, Hyoung-Soo;Rhee, Chul-Woo;Kim, Kangjoo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.287-290
    • /
    • 2002
  • To examine the denitrification process in an alluvial aquifer in the Cheonan site, hydrological and hydrogeochemical studies were carried out. Elevated levels of NO$_3$ (maximum 77.6 mg/L) were observed in shallow groundwaters of the area, as a result of poultry and agricultural activity. However, the nitrate concentrations were found to be consistently attenuated down to very low levels (<1.0 mg/L). The abrupt removal of nitrate coincided with the pattern of redox change and indicated that denitrification is the most plausible process. The hydrochemistry and mass balance approach using geochemical modeling (phreeqc 2.0) and redox chemistry indicated that chemo-autotrophic denitrification via pyrite oxidation is the key Process to control the nitrate attenuation in the study area.

  • PDF

Hydrogeochemistry and Statistical Analysis of Water Quality for Small Potable Water Supply System in Nonsan Area (논산지역 마을상수도 수질의 수리지화학 및 통계 분석)

  • Ko, Kyung-Seok;Ahn, Joo-Sung;Suk, Hee-Jun;Lee, Jin-Soo;Kim, Hyeong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.72-84
    • /
    • 2008
  • This study was carried out to provide proper management plans for small portable water supply system in the Nonsan area through water quality monitoring, hydrogeochemical investigation and multivariate statistical analyses. Nonsan area is a typical rural area heavily depending on small water supply system for portable usage. Geology of the area is composed of granite dominantly along with metasedimentary rocks, gneiss and volcanic rocks. The monitoring results of small portable water supply system showed that 13-21% of groundwaters have exceeded the groundwater standard for drinking water, which is 5 to 8 times higher than the results from the whole country survey (2.5% in average). The major components exceeding the standard limits are nitrate-nitrogen, turbidity, total coliform, bacteria, fluoride and arsenic. High nitrate contamination observed at southern and northern parts of the study area seems to be caused by cultivation practices such as greenhouses. Although Ca and $HCO_3$ are dominant species in groundwater, concentrations of Na, Cl and $NO_3$ have increased at the granitic area indicating anthropogenic contamination. The groundwaters are divided into 2 groups, granite and metasedimentary rock/gneiss areas, with the second principal component presenting anthropogenic pollution by cultivation and residence from the principal components analysis. The discriminant analysis, with an error of 5.56% between initial classification and prediction on geology, can explain more clearly the geochemical characteristics of groundwaters by geology than the principal components analysis. Based on the obtained results, it is considered that the multivariate statistical analysis can be used as an effective method to analyze the integrated hydrogeochemical characteristics and to clearly discriminate variations of the groundwater quality. The research results of small potable water supply system in the study area showed that the groundwater chemistry is determined by the mixed influence of land use, soil properties, and topography which are controlled by geology. To properly control and manage small water supply systems for central and local governments, it is recommended to construct a total database system for groundwater environment including geology, land use, and topography.

Study on Temporal Decay Characteristics of Naturally Occurring Radionuclides in Groudwater in Two Mica Granite Area (복운모화강암지역 지하수 중 자연방사성 물질의 경시적 붕괴특성 연구)

  • Kim, Moon Su;Kim, Tae Seung;Kim, Hyun Koo;Kim, Dong Su;Jeong, Do Hwan;Ju, Byoung Kyu;Hong, Jung Ki;Kim, Hye Jin;Park, Sun Hwa;Jeong, Chan Ho;Cho, Byong Wook;Han, Jin Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.4
    • /
    • pp.19-31
    • /
    • 2013
  • To figure out the decay characteristics of naturally occurring radionuclides, eight sampled groundwaters from a monitoring borehole having high levels of uranium and radon concentrations in a two mica granitic area have analyzed by liquid scintillation counters (LSC) for over 1 year. In December 2011, three groundwater samples (DJ1, DJ2, DJ3) were obtained from each aquifer system located at -20 m, -40 m, -60 m of the monitoring borehole below the ground surface, respectively. Five samples (DJ4, DJ5, DJ6, DJ7, DJ8) were additionally gained from each aquifer positioned -20 m, -40 m, -60 m, -100 m, -105 m of the borehole in February 2012, respectively. Temporal variation characteristics of uranium and radon concentrations have showed over maximum 2.1 times and 1.4 times fluctuations of the values in the same sampling intervals over time, respectively. The intervals of -40 m and -105 m in the borehole have the highest values of uranium and radon concentrations, respectively. This may imply that the concentrations of naturally occurring radionuclides such as uranium and radon in groundwater have been changed over time and indicate that the qualities of groundwaters from the aquifers developed at each interval in the borehole are different each other. This discrepancy, moreover, could be caused by behaviour differences between uranium which is in ionic status having a half life of 4.6 billion years and is transported along with the flowing groundwater, and radon which is in gaseous status having a 3.82 day's half life in the aquifer systems. Physicochemical characteristics of groundwaters from the aquifer systems could be identified by the results of the on-situ measuring items such as pH and Eh, and the major ionic contents. The CPM values of eight groundwater samples analysed by LSC over one year have shown not to follow the theoretical decay curve of the radon. The CPM values of the samples have ranged from 2 to 7.5 after it had passed two months when the theoretical CPM values of the radon started zero since the initial analysis. Alpha and beta particle spectrums have shown the peaks of radium-226, however they have not revealed any peaks of radon and it's daughter products such as polonium-218 and 214, bismuth-214 for the late stage of the analysis. This implies that the groundwater from the borehole may contain radium-226 having a half life of 1,600 years which decays continuously.

Occurrence of Radionuclides in Groundwater of Korea According to the Geological Condition (국내 지질별 지하수내 자연방사성물질의 산출특성)

  • Yun, Sang Woong;Lee, Jin-Yong;Park, Yu-Chul
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.71-78
    • /
    • 2016
  • This study aimed to evaluate the occurrence of natural radionuclides in Korean groundwater. Groundwater radionuclide data for the period 2000-2011 were obtained from the National Institute of Environmental Research and published literature, classified into five groups according to host rock type, and used to construct detailed concentration maps. Radon, uranium, gross-α, and radium concentrations ranged from 0.4 to 64,688.0 pCi/L (mean: 4,907 pCi/L), 0 to 2,297 μg/L (mean: 27.5 μg/L), 0 to 312 pCi/L (mean: 3.9 pCi/L), and 0 to 17.4 pCi/L (mean: 0.2 pCi/L), respectively. Radon concentrations in 562 of a total 1,501 wells (i.e., 53.5%) exceeded 4,000 pCi/L, which is the acceptable contamination threshold established by the United States Environmental Protection Agency. Uranium, gross-α, and radium concentrations exceeded the respective thresholds of 30 μg/L, 15 pCi/L, and 5 pCi/L in 121 of 1,031 wells (11.9%), 34 of 978 wells (3.5%), and 4 of 89 wells (4.5%), respectively. The mean radionuclide concentration in groundwaters hosted by igneous and metamorphic rocks was higher than that in groundwaters hosted by other rock types, such as volcanics, carbonates, and other sedimentary rocks. The correlations between individual radionuclides were weak or insignificant.

Estimation of deep reservoir temperature of thermal groundwaters in Bugok and Magumsan areas, South Korea

  • Park, Seong-Sook;Yun, Seong-Taek;So, Chil-Sup
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.473-476
    • /
    • 2004
  • In this study, hydrochemical studies of thermal waters in the Bugok and Magumsan areas showing geothermal anomalies were carried, and the applicability of ion seothermometers and multiple mineral equilibrium approach was examined to estimate their potential deep reservoir temperatures. Typical thermal waters of the two areas are clearly grouped into two major types, according to water chemistry: Na-Cl type (group A) and Na-SO4 type (group D). Compared to group A, group B and C waters show some modifications in chemistry. Group E waters show the modified chemistry from group D. Geothermal waters from the two areas showed some different chemical characteristics. The thermal waters of group A and B in Magumsan area are typically neutral to alkaline (pH=6.7 to 8.1) and Cl-rich (up to 446.1 mg/L), while the waters of group D and E in Bugok area are alkaline (pH=7.6 to 10.0) and SO$_4$-rich (up to 188.0 mg/L). The group A (Na-Cl type) and group D (Na-SO$_4$ type) waters correspond to mature or partially immature water, whereas the other types are immature water. The genesis of geothermal waters are considered as follows: group A and B waters were formed by seawater infiltration into reservoir rocks along faults and fracture zones and possibly affected by fossil connate waters in lithologic units through which deep hot waters circulate; on the other hand, group D and E waters were formed by the oxidation of sulfide minerals (mainly pyrite) in surrounding sedimentary rocks and/or hydrothermal veins occurring along restricted fracture channels and were possibly affected by the input and subsequent oxidation of S-bearing gases (e.g. H2S) from deep thermal reservoir (probably, cooling pluton). The application of quartz, Na-K, K-Mg geothermometers to the chemistry of representative group A and D waters yielded a reasonable temperature estimate (99-147$^{\circ}C$ and 90-142$^{\circ}C$) for deep geothermal reservoir. Aqueous liquid-rich fluid inclusions in fracture calcites obtained from drillcores in Bugok area have an average homogenization temperature of 128$^{\circ}C$, which corresponds to the results from ion geothermometers. The multiple mineral equilibrium approach yielded a similar temperature estimate (105-135$^{\circ}C$ and 100-14$0^{\circ}C$). We consider that deep reservoir temperatures of thermal waters in the Magumsan and Bugok areas can be estimated by the chemistry of typical Na-Cl and Na-SO$_4$ type waters and possibly approach 105-135$^{\circ}C$ and 100-14$0^{\circ}C$.

  • PDF

Effects of pH-Eh on Natural Attenuation of Soil Contaminated by Arsenic in the Dalchen Mine Area, Ulsan, Korea (비소로 오염된 달천광산 토양의 자연저감 능력에 대한 pH-Eh영향)

  • Park Maeng-Eon;Sung Kyu-Youl;Lee Minhee;Lee Pyeong-Koo;Kim Min-Chul
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.513-523
    • /
    • 2005
  • The contamination of soils and groundwaters in the Dalcheon mine area, Ulsan, is investigated, and a natural attenuation capacity on redox and pH is evaluated. Arsenopyrite, the major source of arsenic pollution in the Dalcheon mine area, is contained up to $2\%$ in tailings. Furthermore, As-bearing minerals such as loellingite, nicolite, rammelsbergite, gersdorffite cobaltite and pyrite are also source of arsenic contamination, which show various concentration of arsenic each other. Surface of pyrite and arsenopyrite in tailings partly oxidized into Fe-arsenates and Fe-oxides, which means a progressive weathering process. There is no relationship between pH and arsenic content in groundwaters, otherwise Eh and arsenic concentration in unsaturated and saturated groundwater shows positive relationship. RMB (Red Mud Bauxite) could be useful as a trigger on natural attenuation due to superior ability of removal capacity of arsenic when contaminated soil and groundwater in the Dalcheon mine area are remediated.

Groundwater Contamination by Cation, Anion and Pesticides (지하수중 음이온, 양이온, 및 금속의 함량)

  • 김형석;정세영;최중명
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.111-128
    • /
    • 1992
  • According to the increase of population and industrialization, the quality of our drinking water are becoming worse by the contamination of resources, production of THM and other halogenated hydrocarbons during the purifying process, the problem of corroded water supplying pipeline, and the water reservoir tanks, Many people choose groundwater to drink instead of city tap water, but sometimes we get report about groundwater contamination by wastes, swage, septic tank, etc. It is reported that in U. S. over 20% of population are drinking groundwater, but U. S EPA reported the groundwater contamination by pesticides, herbicides, fungicides, fertilizer, and various chemical substances. Craun, et at announced the groundwater contamination by bacteria which are related with poor installation of septic tank. Johnson and Kross mentioned aboutmethemoglobinemia by NO3-N originated from human and animal feces, organic chemicals, and fertilizer, and as the results the infant mortality could be risen. Some scientist also reported the high concentration of metals in groundwaters and some cation and anions, and volatile organic compou nds. Authors investigated 80 groundwaters in urban, agricultural, and industrial area during last 3 month(June - August) to check any drinking water quality parameters are exceeding the standards. The results were as follow. 1, The average value of ammonia nitrate were within the standard, but 11.76% of urban area were exceeded the 10 rpm standard, in agricultural area 42.3175 were exceeded, and in industrial area 20.2% were exceeded the drinking water standard of 10 ppm. the highest concentration was 29.37 ppd in industrial area. 2. The mean value of metals is not exceeded the standard, but there were some groundwater whose Mn value was 0.424 ppm(standard is 0,3 ppm) in urban area, 0.737 rpm in agricultural area, and 5.188 ppm in industrial area. The highest Zn value was 1.221 ppm (standard is 1.0 ppm)was found in industrial area. 3. The percentage of contamination by general bacteria was 8.82% in urban area, 15.38% in agricultural area, and 15.00% in industrial area. Escherichia coil group was also contaminated by 35.29% in urban area, 30.76% in agricultural area, and 30.00% in industrial area. 4, The pH value was within the standard which means there was no influence by acid or alkali chemicals, nor acid rain Through the above results, all the groundwater should be tested to check the safety for drinking water and should make some alternative methods suitable for drink.

  • PDF