• Title/Summary/Keyword: Groundwater system

Search Result 1,185, Processing Time 0.031 seconds

Remediation of Contaminated Groundwater: Change of Paradigm for Sustainable Use

  • Lee, Jin-Yong;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.1-7
    • /
    • 2013
  • Groundwater development and use have been increasing in Korea causing frequent occurrences of related hazards such as groundwater level decline, land subsidence, and groundwater contamination. To tackle these groundwater problems, central and local governments have set-up and maintained many groundwater monitoring programs such as the National Groundwater Monitoring Network and the Groundwater Quality Monitoring Network, which collect very valuable data on the overall status of domestic groundwater to aid proper groundwater management. However, several problems mainly related to the remediation of contaminated groundwater remain unresolved. Recently, there have been some incidents related to the contamination of groundwater, and these have drawn the concern of the Korean people. Although groundwater contamination has been investigated in detail, actual groundwater remediation work has not yet been implemented. The remediation of the contaminated groundwater must begin immediately in order to sustain the eco-system service of clean groundwater and enhance the welfare of the Korean people.

Remediation of PCE-contaminated Groundwater Using Permeable Reactive Barrier System with M0M-Bentonite (MOM-Bentonite 투수성반응벽체를 이용한 PCE로 오염된 지하수의 정화)

  • Chung, Sung-Lae;Lee, Dal-Heui
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.73-80
    • /
    • 2012
  • The objectives of this research were to study the applicability and limitations of permeable reactive barrier (PRB) for the removal of tetrachloroethylene (PCE) from the groundwater. PRB column tests were conducted using reactive material with Moringa Oleifera Mass - Bentonite (Mom-Bentonite). Most of the PCE in the groundwater was degraded and/or captured (sorpted) in the zone containing activated material (MOM-Bentonite). The removal rate of PCE from the groundwater was 90% and 75% after 30 days and 180 days, respectively. The effect of micro-organisms on the long-term permeability and reactivity of the barrier is not well understood. MOM-Bentonite PRB system in this research has the potential to be developed into an environmentally and economically acceptable technology for the in situ remediation of PCE-contaminated groundwater.

The Influences of Aquifer Thermal Energy Storage (ATES) System on Geochemical Properties of Groundwater (대수층 계간 축열시스템 적용을 위한 지하수의 화학적 특성 변화)

  • Choi, Hanna;Lee, Hong-Jin;Shim, Byoung Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.14-24
    • /
    • 2021
  • Aquifer thermal energy storage (ATES) system uses groundwater thermal energy for cooling and heating of buildings, and it is also often utilized to provide warm water to crops and plants for the purpose of enhancing agricultural yields. This study investigated the potential influences of a ATES system on the geochemical properties of groundwater by simulating the variation of hydrochemistry and saturation index of groundwater during ATES operation. The test bed was installed at an agricultural field, which is mainly composed of an groundwater-rich alluvial plain. The simulation results showed no significant precipitation of mineral phases such as manganese-iron oxide, carbonate and sulfate around the ATES test bed, as well as no debasement of other important water quality parameters. The implementation of ATES system in the study area was appropriate and effective for utilizing the thermal energy of groundwater for agricultural use.

A Study of the Influence of Groundwater Level on the System Performance of Open Loop Geothermal System (지하수 수위가 개방형 지열시스템 성능에 미치는 영향에 관한 연구)

  • Kim, Jinsang;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.3
    • /
    • pp.1-10
    • /
    • 2013
  • Open loop geothermal heat pumps have great potential where the groundwater resources are sufficient. Performance of open loop geothermal heat pump systems is considered higher than that of ground source heat pumps. Head and power calculation of submersible pumps, heat pump units, and piping are numerically based on regression data. Results shows that the system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system COPs. The highest achievable cooling system COPs become 6.34, 6.12, and 5.95 as the groundwater levels are 5m, 15m, and 25m. The highest heating system COPs also become 4.59, 4.37, and 4.20. Groundwater level and submersible pump selection greatly influence the system performance of open loop geothermal heat pumps. It needs to be analysed during the design process of open loop geothermal heat pump system, possibly with analysis tools that include wide range of pump product data.

FACTORS OF GROUNDWATER FLUCTUATION IN SHIN KORI NUCLEAR POWER PLANTS IN KOREA

  • Hyun, Seung Gyu;Woo, Nam C.;Kim, Kue-Young;Lee, Hyun-A
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.539-552
    • /
    • 2013
  • To establish an aging management plan considering seawater influx and changes in groundwater within nuclear power plant sites, the characteristics of groundwater flow must be understood. This study investigated the characteristics of groundwater flow within the site and analyzed groundwater level recorded by monitoring wells to evaluate groundwater flow characteristics and elements that affected these characteristics for supplying the information to conduct the appropriate aging management for ensuring the safety of the safety-related structures in Shin Kori Unit 1 and 2. The increase in groundwater level during the wet season results from high sea-level conditions and the large amount of precipitation. As a result of the analysis of groundwater distribution and change characteristics, the site could be divided into a rainfall-affected area and a tide-affected area. First, the rainfall-affected area can further be divided into areas that are affected simultaneously by excavation, backfill, and a permanent dewatering system. Secondly, areas that are not affected by excavation, or the dewatering system, or by structure arrangement and excavation. Analysis of the spectrum for wells affected by tides resulted in confirmation of the M2 component (12.421 hr) and S2 component (12.000 hr) of the semidiurnal tides, and the O1 component (25.819 hr) of the diurnal tides. In the cross-correlation results regarding tides and groundwater levels, the lag time occurred diversely within 1-3 hours by the effect of the well location from sea, the distribution of the backfill material with depth, and the concrete structure.

Analysis of Groundwater Discharge into the Geumjeong Tunnel and Baseflow Using Groundwater Modeling and Long-term Monitoring (금정터널내의 지하수 유출량과 기저유출량 변화 분석)

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Yu, Il-Ryun;Whang, Hak-Soo;Kim, Sang-Hyun;Kim, Moon-Su
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1691-1703
    • /
    • 2015
  • When constructing tunnels, it is important to understand structural, geological and hydrogeological conditions. Geumgeong tunnel that has been constructed in Mt. Geumjeong for the Gyeongbu express railway induced rapid drawdown of groundwater in the tunnel construction area and surroundings. This study aimed to analyze groundwater flow system and baseflow using long-term monitoring and groundwater flow modeling around Geumgeong tunnel. Field hydraulic tests were carried out in order to estimate hydraulic conductivity, transmissivity, and storativity in the study area. Following the formula of Turc and groundwater flow modeling, the annual evapotranspiration and recharge rate including baseflow were estimated as 48% and 23% compared to annual precipitation, respectively. According to the transient modeling for 12 years after tunnel excavation, baseflow was estimated as $9,796-9,402m^3/day$ with a decreasing tendency.

Assessment of Groundwater Quality on a Watershed Scale by Using Groundwater Quality Monitoring Data (지하수수질측정망 자료를 이용한 유역단위 지하수 수질등급 평가)

  • Kim, Jeong Jik;Hyun, Yunjung
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.186-195
    • /
    • 2021
  • In Korea, groundwater quality is monitored through National Groundwater Quality Monitoring Network (NGQMN) administered by Ministry of Environment. For a given contaminant, compliance to groundwater quality standards is assessed on a annual basis by monitoring the number of incidents that concentration exceeds the regulatory limit. However, this approach provides only a fractional information about groundwater quality degradation, and more crucial information such as location and severity of the contamination cannot be obtained. For better groundwater quality management on a watershed, a more spatially informative and intuitive method is required. This study presents two statistical methods to convert point-wise monitoring data into information on groundwater quality status of a watershed by using a proposed grading scale. The proposed grading system is based on readily available reference standards that classify the water quality into 4 grades. The methods were evaluated with NO3-, Cl-, and total coliform data in Geum River basin. The analyses revealed that groundwater in most watersheds of Geum River basin is good for domestic or/and drinking with no treatment. But, there was notable quality degradation in Bunam seawall and So-oak downstream standard watersheds contaminated by NO3- and Cl-, respectively.

Groundwater Ages and Flow Paths at a Coastal Waste Repository Site in Korea, Based on Geochemical Characteristics and Numerical Modeling

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Koh, Dong-Chan;Lee, Chung-Mo;Ryu, Sang Min;Lee, Soo-Hyoung
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • Groundwater flow paths and groundwater ages at a radioactive waste repository located in a coastal area of South Korea were evaluated using the hydrochemical and hydrogeological characteristics of groundwater, surface water, rain water, and seawater, as well as by numerical modeling. The average groundwater travel time in the top layer of the model, evaluated by numerical modeling and groundwater age (34 years), approximately corresponds to the groundwater age obtained by chlorofluorocarbon (CFC)-12 analysis (26-34 years). The data suggest that the groundwater in wells in the study area originated up-gradient at distances of 140-230 m. Results of CFC analyses, along with seasonal variations in the δ18O and δD values of groundwater and the relationships between 222Rn concentrations and δ18O values and between 222Rn concentrations and δD values, indicate that groundwater recharge occurs in the summer rainy season and discharge occurs in the winter dry season. Additionally, a linear relationship between dissolved SiO2 concentrations and groundwater ages indicates that natural mineralization is affected by the dilution of groundwater recharge in the rainy summer season.

A Comparative Study on Forecasting Groundwater Level Fluctuations of National Groundwater Monitoring Networks using TFNM, ANN, and ANFIS (TFNM, ANN, ANFIS를 이용한 국가지하수관측망 지하수위 변동 예측 비교 연구)

  • Yoon, Pilsun;Yoon, Heesung;Kim, Yongcheol;Kim, Gyoo-Bum
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.123-133
    • /
    • 2014
  • It is important to predict the groundwater level fluctuation for effective management of groundwater monitoring system and groundwater resources. In the present study, three different time series models for the prediction of groundwater level in response to rainfall were built, those are transfer function noise model (TFNM), artificial neural network (ANN), and adaptive neuro fuzzy interference system (ANFIS). The models were applied to time series data of Boen, Cheolsan, and Hongcheon stations in National Groundwater Monitoring Network. The result shows that the model performance of ANN and ANFIS was higher than that of TFNM for the present case study. As lead time increased, prediction accuracy decreased with underestimation of peak values. The performance of the three models at Boen station was worst especially for TFNM, where the correlation between rainfall and groundwater data was lowest and the groundwater extraction is expected on account of agricultural activities. The sensitivity analysis for the input structure showed that ANFIS was most sensitive to input data combinations. It is expected that the time series model approach and results of the present study are meaningful and useful for the effective management of monitoring stations and groundwater resources.

Climate Change and Groundwater Sustainability in Korea for Next Decade (기후변화와 국내 지하수자원의 지속가능성 - 다음 10년을 위해서)

  • Woo, Nam C.
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • Global climate changes affect the local hydrologic cycle, and subsequently, require changes in water resource management strategies of Korea. Variations in precipitation and urbanization have adverse effects on the reasonable and efficient utilization of groundwater resources. Groundwater management strategies of Korea have been implemented based on the evaluation of "sustainable yield", which is calculated from the amount of annual recharge. However, this sustainable yield has no consideration of natural discharge and dynamic equilibrium of the groundwater system. Therefore, for the effective groundwater management strategies of the following decades, we need representative and reliable observations, and have to develop methods for the systematic analysis and interpretations of the data to draw valid information in linkage of natural and societal environmental changes.