• Title/Summary/Keyword: Groundwater system

Search Result 1,192, Processing Time 0.023 seconds

Hydrologic and Environmental Assessment of an Infiltration Planter for Roof Runoff Use (지붕 빗물이용을 위하여 개발된 침투화분의 환경·수문학적 평가)

  • Moon, So-Yeon;Choi, Ji-Yeon;Hong, Jung-Sun;Yu, Gi-Gyung;Jeon, Je-Chan;Flores, Precious Eureka D.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Due to urbanization and increase in impervious area, changes in natural water circulation system have become a cause of groundwater recharge reduction, streamflow depletion and other hydrological problems. Therefore, this study developed the infiltration planter techniques applied in an LID facility treating roof stormwater runoff such as, performance of small decentralized retention and infiltration through the reproduction of natural water circulation system and use of landscape for cleaning water. Assessment of an infiltration planter was performed through rainfall monitoring to analyze the water balance and pollutant removal efficiency. Hydrologic assessment of an infiltration planter, showed a delay in time of effluent for roof runoff for about 3 hours and on average, 79% of facilities had a runoff reduction through retention and infiltration. Based on the analysis, pollutant removal efficiency generated in the catchment area showed an average of 97% for the particulate matter, 94% for the organic matter and 86-96% and 92-93% for the nutrients and heavy metals were treated, respectively. Comparative results with other LID facilities were made. For this study, facilities compared the SA/CA to high pollutant removal efficiency for the determination to of the effectiveness of the facility when applied in an urban area.

An Experimental study to estimate physical properties of porous media by a permittivity method (유전율법에 따른 다공질 매질의 특성 파악을 위한 실험적 연구)

  • 김만일;니시가끼마코토
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.405-418
    • /
    • 2003
  • Measurements of volumetric water content and saturation of porous media are very important factors in understanding the physical characteristics of soil, groundwater recharge by rainfall, pollutant movement, and slope failure. To measure such physical parameters, a permittivity method using electromagnetic wave is applied and use is made of the special permittivity response of understand to water and ethanol. In particular, the estimation is required because permittivity is influenced by the nature of the underground environment. In this study, we carried out experiments on the relative dependency of soil density, temperature and salinity of standard sand and granitic weathered soil using FDR-V system (Frequency domain reflectometry with vector network analyzer) within a frequency range of 1 - 18 GHz. The results of the study showed that the dielectric constants of standard sand and granitic weathered soil increased with increased volumetric water content of soil. However, the dependency of soil density was found to be a little low. Changes of dielectric constant with temperature appeared definitely in the real part of 1 GHz. That is, the dielectric constant of real part at 1 GHz of water and standard sand increased with the rise of temperature. However, ethanol showed decreased tendency. The study also showed that dielectric constant increased with increase in salinity at imaginary part of 1 GHz. It could be concluded from this study FDR-V system can adequately measure the physical properties of soil and the degree of salinity concentration of porous media within 1 GHz frequency range using dielectric constant.

Effects of the Cooling and Heating System with Seasonal Thermal Storage in Alluvial Aquifer on Greenhouse Heating (충적대수층 계간축열 냉난방 시스템의 온실 난방 효과)

  • Moon, Jong Pil;Kang, Geum Choon;Kim, Hyung Gweon;Lee, Tae Seok;Oh, Sung Sik;Jin, Byung Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.127-135
    • /
    • 2017
  • In this study, a cold well and a warm one with the distance of 100 m were installed in the alluvial aquifer. Groundwater used as the heat and the cold source of heat pump was designed to flow into the warm and the cold well with a diameter of 200 mm. In order to increase the heat and cold storage in aquifer, six auxiliary wells with the diameter of 50 mm and the depth of 30 m were installed at an interval of 5 m from the main well. Also, heat pump 50 RT, the thermal tank $40m^3$, and a remote control and monitoring system were installed in three single-span greenhouses ($2,100m^2$) for growing tomato in Buyeo, Chungcheongnam-do. According to the aquifer heat storage test which had been conducted from Aug. 31 to Sep. 22, 2016, warm water of $850m^3$ was found to flow into warm well. The temperature of the injected water was $30^{\circ}C$ (intake temperature : $15^{\circ}C$), and the heat of 12.8 Gcal was stored. The greenhouse heating test in winter had been conducted from Nov. 21, 2016 to Apr. 30, 2017. On Nov. 21, 2016 when heating greenhouse started, the aquifer temperature of the warm well was $18.5^{\circ}C$. The COP for heating with water source at $18.5^{\circ}C$ was 3.8. The intake water temperature of warm well was gradually lowered to the temperature of $15^{\circ}C$ on Jan. 2, 2017 and the heat pump COP was measured to be 3.2 at that time. As a result, the heat pump COP was improved by 18 %. and retrieval heat was 8 Gcal, the retrieval rate of heat stored in aquifer was estimated at 63 %.

Geochemical Experiment for Effective Treatment of Abandoned Mine Wastes (광산폐석의 효과적 처리를 위한 지화학적 연구)

  • 이진국;이재영
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.31-44
    • /
    • 1998
  • The geochemical experiments were carried out to investigate a removal effect of heavy metals in abdndoned metallic mine wastes, and to conceive a treatment techniques of them. In order to prevent contamination, experiment appature was made of acrylic acid resin and polyethylene which resist to acid and alkali. Experiment models are devided into four groups based on the system environments, distribution patterns and a kind of filling materials. The first group is background model(model I ) which is filled with waste only and opened to air. The second one is four layer group which is subdivided into two models, opened and closed systems, and the third mix group which is subdivided into three models based on mixing ratio of filling materials and system environment like a layered group. The forth is composed of two layer model, lower one composed of waste and upper one limestone chips. Solution drained from Model Ishows a high contents of heavy metals on the all terms of experiments. Among the models, however, the closed mix model V and Ⅶ show the most effective removal of heavy metals liberated from wastes. Models having different mixing ratios of filling materials on closed systems does not affect in heavy metal removal effect. But, the distribution patterns of filling materials affect very much on removal effect of heavy metals. The closed models with same constitution ratios and distribution patterns of filling materials show more and less effective removal to the open models.

  • PDF

Introduction and Classification System of Reservoir Park Mitigating Flood (홍수대응 다목적 재해대응 저류공원의 도입과 분류체계 연구)

  • Moon, Soo-Young;Jung, Seung-Hyun;Yun, Hui-Jae
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.646-659
    • /
    • 2018
  • This study proposed "Reservoir Park", which added disaster prevention function to urban green spaces such as city parks through domestic and overseas related laws review, case studies, field trips. This is a combination of urban parks and reservoirs as urban planning facilities, which can provide both space for daily use by urban residents and disaster mitigation functions in case of emergency. In order to prevent flooding in urban areas due to climate change, facilities should be installed in the form of parks, etc., as the reservoir facility should be systematically reviewed together with urban planning facilities. However it was found that the reservoir park was not clear as a theme park. In this study, the types of storage facilities in urban areas were reclassified into five types of storage parks reflecting the characteristics of urban green spaces through domestic case studies and field trips. The classification of the reservoir parks is classified into 5 kinds such as ecological type, vegetation cover type, exercise facility type, underground burial type and hybrid type based on groundwater level, human use, and reservoir size. This classification system can be used to determine the types of facilities to be built after designating the location of future storage facilities.

Evaluation of thermal-hydro-mechanical behavior of bentonite buffer under heating-hydration condition at disposal hole (처분공 가열-수화 조건에서 벤토나이트 완충재의 열-수리-역학적 거동 특성 평가)

  • Yohan Cha;Changsoo Lee;Jin-Seop Kim;Minhyeong Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.175-186
    • /
    • 2023
  • The buffer materials in disposal hole are exposed to the decay heat from spent nuclear fuels and groundwater inflow through adjacent rockmass. Since understanding of thermal-hydro-mechanical-chemical (T-H-M-C) interaction in buffer material is crucial for predicting their long-term performance and safety of disposal repository, it is necessary to investigate the heating-hydration characteristics and consequent T-H-M-C behavior of the buffer materials under disposal conditions considering geochemical factors. In response, the Korea Atomic Energy Research Institute developed a laboratory-scale 'Lab.THMC' experiment system, which characterizes the T-H-M behavior of buffer materials under different geochemical conditions by analyzing heating-hydration process and stress changes. This technical report introduces the detail design of the Lab.THMC system, summarizes preliminary experimental results, and outlines future research plans.

Introduction of a New Method for Total Organic Carbon and Total Nitrogen Stable Isotope Analysis of Dissolved Organic Matter in Aquatic Environments (수환경 내 용존성 유기물질의 총 유기탄소 및 총 질소 안정동위원소 신규 분석법 소개)

  • Si-yeong Park;Heeju Choi;Seoyeon Hong;Bo Ra Lim;Seoyeong Choi;Eun-Mi Kim;Yujeong Huh;Soohyung Lee;Min-Seob Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.339-347
    • /
    • 2023
  • Dissolved organic matter (DOM) is a key component in the biogeochemical cycling in freshwater ecosystem. However, it has been rarely explored, particularly complex river watershed dominated by natural and anthropogenic sources, such as various effluent facility and livestock. The current research developed a new analytical method for TOC/TN (Total Organic Carbon/Total Nitrogen) stable isotope ratio, and distinguish DOM source using stable isotope value (δ13C-DOC) and spectroscopic indices (fluorescence index [FI] and biological index [BIX]). The TOC/TN-IR/MS analytical system was optimized and precision and accuracy were secured using two international standards (IAEA-600 Caffein, IAEA-CH-6 Sucrose). As a result of controlling the instrumental conditions to enable TOC stable isotope analysis even in low-concentration environmental samples (<1 mgC L-1), the minimum detection limit was improved. The 12 potential DOM source were collected from watershed, which includes top-soils, groundwater, plant group (fallen leaves, riparian plants, suspended algae) and effluent group (pig and cow livestock, agricultural land, urban, industry facility, swine facility and wastewater treatment facilities). As a result of comparing characteristics between 12 sources using spectroscopic indices and δ13C-DOC values, it were divided into four groups according to their characteristics as a respective DOM sources. The current study established the TOC/TN stable isotope analyses system for the first time in Korea, and found that spectroscopic indices and δ13C-DOC are very useful tool to trace the origin of organic matter in the aquatic environments through library database.

Evaluation of bias and uncertainty in snow depth reanalysis data over South Korea (한반도 적설심 재분석자료의 오차 및 불확실성 평가)

  • Jeon, Hyunho;Lee, Seulchan;Lee, Yangwon;Kim, Jinsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.543-551
    • /
    • 2023
  • Snow is an essential climate factor that affects the climate system and surface energy balance, and it also has a crucial role in water balance by providing solid water stored during the winter for spring runoff and groundwater recharge. In this study, statistical analysis of Local Data Assimilation and Prediction System (LDAPS), Modern.-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and ERA5-Land snow depth data were used to evaluate the applicability in South Korea. The statistical analysis between the Automated Synoptic Observing System (ASOS) ground observation data provided by the Korea Meteorological Administration (KMA) and the reanalysis data showed that LDAPS and ERA5-Land were highly correlated with a correlation coefficient of more than 0.69, but LDAPS showed a large error with an RMSE of 0.79 m. In the case of MERRA-2, the correlation coefficient was lower at 0.17 because the constant value was estimated continuously for some periods, which did not adequately simulate the increase and decrease trend between data. The statistical analysis of LDAPS and ASOS showed high and low performance in the nearby Gangwon Province, where the average snowfall is relatively high, and in the southern region, where the average snowfall is low, respectively. Finally, the error variance between the four independent snow depth data used in this study was calculated through triple collocation (TC), and a merged snow depth data was produced through weighting factors. The reanalyzed data showed the highest error variance in the order of LDAPS, MERRA-2, and ERA5-Land, and LDAPS was given a lower weighting factor due to its higher error variance. In addition, the spatial distribution of ERA5-Land snow depth data showed less variability, so the TC-merged snow depth data showed a similar spatial distribution to MERRA-2, which has a low spatial resolution. Considering the correlation, error, and uncertainty of the data, the ERA5-Land data is suitable for snow-related analysis in South Korea. In addition, it is expected that LDAPS data, which is highly correlated with other data but tends to be overestimated, can be actively utilized for high-resolution representation of regional and climatic diversity if appropriate corrections are performed.

Identification of Active Agents for Reductive Dechlorination Reactions in Cement/Fe (II) Systems by Using Cement Components (시멘트 구성성분을 이용한 시멘트/Fe(II)의 TCE 환원성 탈염소화 반응의 유효반응 성분 규명)

  • Jeong, Yu-Yeon;Kim, Hong-Seok;Hwang, In-Seong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.92-100
    • /
    • 2008
  • Experimental studies were conducted to identify the active agents for reductive dechlorination of TCE in cement/Fe(II) systems focusing on cement components such as CaO, $Fe_2O_3$, and $Al_2O_3$. A hematite that was used to simulate an $Fe_2O_3$ component in cement was found to have degradation efficiencies (k = 0.641 $day^{-1}$) equivalent to that of cement/Fe(II) systems in the presence of CaO/Fe(II), only when it contained an aluminum impurity$(Al_2O_3)$. When the effect of $Al_2O_3$ content of hematite/CaO/$Al_2O_3$/Fe(II) system was tested, the mole ratio of $Al_2O_3$ to CaO affected the rate of TCE degradation with an optimum ratio around 1 : 10 that resulted in a rate constant of 0.895 $day^{-1}$. In the SEM images of hematite/CaO/$Al_2O_3$/Fe(II) systems, acicular crystals were also found that were also observed in cement/Fe(II) systems. Thus it was suspected that these crystals were reactive reductants and that they might be goethite or ettringite that are known to have acicular structures. An EDS element map analysis revealed that these crystals were not goethite crystals. A subsequent experiment that tested reactivities of compounds formed during the ettringite synthesis showed that ettringite and minerals associated with ettringite formation are not reactive reductants. These observations conclude that a mineral containing CaO and $Al_2O_3$ with a acicular structure could be a major reactive reductant of cement/Fe(II) systems.

Dynamics of $NO_3^{-}$-N in Barley Rhizosphere and Optimum Rate of Nitrogen Top- Dressing Based on $N_{min}$ Soil Test (실초태 실소 의 보리 근권토양내 동적 변화와 $N_{min}$ 토양진단법에 의한 과정 실소추식량 결정)

  • 손상목;큐케마틴;한인아
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.185-194
    • /
    • 1995
  • The prevention of excessive use of nitrogen fertilizer get an attention in Korea not only for minimizing $NO_3^-$ contamination of groundwater but also for establishment of environmental friendly sustainable agriculture. In order to find out the dynamics of $NO_3^-$ in barley rhizosphere and its suitability for nitrogen fertilization strategies and for environmental control, the accumulation of $NO_3^-$ in 3 layer, 0~30cm, 30~60cm, 60~90cm of soil profile has been detected in winter barley pro-duction system. It showed the recommended N fertilization rate for winter barley cause the $NO_3^-$ contamination of groundwater through $NO_3^-$ leaching during winter. The $NO_3^-$ content of 0~90cm soil depth have directly reflected the amount of basal N fertilization in the early spring, but not 0~30cm and 0~60cm soil depth. The contents of $NO_3^-$ measured to 0~30cm, 0~60cm soil depth were not significanly correlated with yield but the contents of $NO_3^-$ measured to 90cm soil depth was highly correlated with yield. Nitrogen fertilizer requirement could be estimated accurately by soil test and it provides field specific N rate recommendation for spring N application to winter barley. It was concluded that $N_{min}$ method could be applied to korean climatic and soil condition for optimal fertilizer application rate.

  • PDF