• Title/Summary/Keyword: Groundwater management

Search Result 584, Processing Time 0.027 seconds

Characteristics of Korea's Groundwater use Rights and Suggestions for Groundwater Management Direction (우리나라 지하수 이용권의 특성과 지하수 관리 방향 제언)

  • Ayoung, Jeong;Yunjung, Hyun;Eun-jee, Cha;Jongwon, Kim
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.1-8
    • /
    • 2023
  • In order to efficiently manage groundwater resources, it is necessary to establish clear definition about the rights to use groundwater because it directly governs the interests of various stakeholders, from users to policy makers. In this paper, we examined the characteristics of Korea's rights to use groundwater through legal precedents, public recognition, laws, and institutional stipulaton. Inclarity about the scope and definition of the right, and the absence of legal basis ruling the exclusion and duration of groundwater use have entailed numerous cases of legal disputes between the parties with incompetible interests. In the perception survey, various responses were obtained from the surveyee regarding the scope of rights perceived by groundwater users, how to respond to groundwater shortages, and opinions about expanding public uses of groundwater. In Korea, the legal authority to use groundwater is governed by different laws while considering groundwater as both private and public property. In foreign countires, the right to use water is separated from property ownership, and it limits the volume and pumping rate of groundwater during a specified period. In order to better manage groundwater resources, it is necessary to come up with a public consensus on the right to use groundwater by considering the opinions of various stakeholders and accomodating them in adminstrative effort in directing groundwater management.

Suggestion of a Groundwater Quality Management Framework Using Threshold Values and Trend Analysis (문턱값과 추세분석을 이용한 지하수 수질관리체계 구축을 위한 연구)

  • An, Hyeonsil;Jee, Sung-Wook;Lee, Soo Jae;Hyun, Yunjung;Yoon, Heesung;Kim, Rak-Hyeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.112-120
    • /
    • 2015
  • Statistical trend analysis using the data from the National Groundwater Quality Monitoring Network (NGQMN) of Korea was conducted to establish a new groundwater quality management framework. Sen’s test, a non-parametric statistical method for trend analysis, was used to determine the linear trend of the groundwater quality data. The analysis was conducted at different confidence levels (i.e., at 70, 80, 90, 95, and 99% confidence levels) for three of groundwater quality parameters, i.e., nitrate-nitrogen, chloride, and pH, which have sufficient time series of the NGQMN data between 2007 and 2013. The results showed that different trends can be determined for different depths even for the same monitoring site and the numbers of wells having significant trends vary with different confidence levels. The wells with increasing or decreasing trends were far less than the wells with no trend. Chloride had more wells with increasing trend than other parameters. On the other hand, nitrate-nitrogen had the most wells with increasing trend and concentration exceeding 75% of the threshold values (TVs). Based on the methodology used for this study, we suggest including groundwater TVs and trend analysis to evaluate groundwater quality and to establish an advanced groundwater quality management framework.

Evaluation of the future monthly groundwater level vulnerable period using LSTM model based observation data in Mihostream watershed (LSTM을 활용한 관측자료 기반 미호천 유역 미래 월 단위 지하수위 관리 취약 시기 평가)

  • Lee, Jae-Beom;Agossou, Amos;Yang, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.481-494
    • /
    • 2022
  • This study proposed a evaluation of the monthly vulnerable period for groundwater level management in the Miho stream watershed and a technique for evaluating the vulnerable period for future groundwater level management using LSTM. Observation data from groundwater level and precipitation observation stations in the Miho stream watershed were collected, LSTM was constructed, predicted values for precipitation and groundwater levels from 2020 to 2022 were calculated, and future groundwater management was evaluated when vulnerable. In order to evaluate the vulnerable period of groundwater level management, the correlation between groundwater level and precipitation was considered, and weights were calculated to consider changes caused by climate change. As a result of the evaluation, the Miho stream watershed showed high vulnerability to underground water management in February, March, and June, and especially near the Cheonan Susin observation well, the vulnerability index for groundwater level management is expected to deteriorate in the future. The results of this study are expected to contribute to the evaluation of the vulnerable period of groundwater level management and the derivation of preemptive countermeasures to the problem of groundwater resources in the basin by presenting future prediction techniques using LSTM.

Development of the spatiotemporal vulnerability assessment method for groundwater resources management at mountainous regions in Korea considering surface water-groundwater interactions (지표수-지하수 연계를 고려한 국내 내륙산간지역 시공간적 지하수자원 관리 취약성 평가 기법 개발)

  • Lee, Jae-Beom;Agossou, Amos;Kim, Geon;Yang, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.807-817
    • /
    • 2021
  • In this study, assessment of vulnerability in the management of spatio-temporal groundwater resources considering the surface waterground water interactions was conducted in administrative districts of mountainous regions in Korea. Mountainous regions were classified into four regions and spatial groundwater resources management vulnerability assessment criteria were selected to consider the surface water-ground water interactions. Paju in the central mountainous region, Gapyeongin the mountains region, Gurye in the southwestern mountainous region, and Yangsan in the southeastern mountainous region were selected as a result of the selection of vulnerable area for groundwater resources management. Assessment of the Monthly vulnerability to groundwater resource management due to changes in groundwater levels and infiltration was carried out in the selected areas. As a result of monthly vulnerability to groundwater resources management, December ~ Feburary was assessed as vulnerable to groundwater resource management. The results of this study are expected to contribute to the more efficient groundwater resource management measures by administrative district

Applicability of Industrial Waste Management Evaluation Model (IWEM) in Korea (지하수 오염방지를 위한 산업폐기물 관리평가 모델(IWEM)의 국내 적용성 분석)

  • Park, Dong-Won;Woo, Nam-C.;Chung, David
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Selection of appropriate liner type would be the most important factor to prevent groundwater contamination by leachate from waste management site. This report introduces the IWEM (Industrial Waste Management Evaluation Model) developed by US EPA to evaluate the potential pollution of groundwater under the waste management unit and to suggest an appropriate type of liner, and provides with the results of IWEM application to a coal-ash landfill site in Korea as a case study. IWEM uses a standard method using a database, a decision-making process based on site characteristics, and the user-friendly input-and-output system. Authors evaluate this model to be applicable in Korea provided that the database is replaced into local data.

Evaluation of groundwater recharge rate for land uses at Mandae stream watershed using SWAT HRU Mapping module (SWAT HRU Mapping module을 이용한 해안면 만대천 유역의 토지이용별 지하수 함양량 평가)

  • Ryu, Jichul;Choi, Jae Wan;Kang, Hyunwoo;Kum, Donghyuk;Shin, Dong Suk;Lee, Ki Hwan;Jeong, Gyo-Cheol;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.743-753
    • /
    • 2012
  • The hydrologic models, capable of simulating groundwater recharge for long-term period and effects on it of crops management in the agricultural areas, have been used to compute groundwater recharge in the agricultural fields. Among these models, the Soil and Water Assessment Tool (SWAT) has been widely used because it could interpret hydrologic conditions for the long time considering effects of weather condition, land uses, and soil. However the SWAT model couldn't represent the spatial information of Hydrologic Response Unit (HRU), the SWAT HRU mapping module was developed in 2010. With this capability, it is possible to assume and analyze spatio-temporal groundwater recharge. In this study, groundwater recharge of rate for various crops in the Mandae stream watershed was estimated using SWAT HRU Mapping module, which can simulate spato-temporal recharge rate. As a result of this study, Coefficient of determination ($R^2$) and Nash-Sutcliffe model efficiency (NSE) for flow calibration were 0.80 and 0.72, respectively, and monthly groundwater recharge of Mandae watershed in Haean-myeon was 381.24 mm/year. It was 28% of total precipitation in 2009. Groundwater recharge rate was 73.54 mm/month and 73.58 mm/month for July and August 2009, which is approximately 18 times of groundwater recharge rate for December 2009. The groundwater recharges for each month through the year were varying. The groundwater recharge was smaller in the spring and winter seasons, relatively. So, it is necessary to enforce proper management of groundwater recharge during droughty season. Also, the SWAT HRU Mapping module could show the result of groundwater recharge as a GIS map and analyze spatio-temporal groundwater recharge. So, this method, proposed in this study, would be quite useful to make groundwater management plans at agriculture-dominant watershed.

Analysis of Groundwater Use in Kap-cheon Basin (갑천 유역의 지하수 이용 특성 분석)

  • Hong, Sung-Hun;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.463-471
    • /
    • 2008
  • The purpose of this study is to analyze the features of groundwater use to utilize as basic information for water-cycle analysis system development and effective groundwater management in the Kap-cheon basin. The cumulative relationship between groundwater use and the number of wells was analyzed to estimate the representative total groundwater use and the number of wells for the Kap-cheon basin. Then, the spatial distribution of groundwater use in the basin were figured out using the detailed information on groundwater use in each well. Finally, the reasonability of groundwater resources management in Kap-cheon basin was evaluated by comparing groundwater recharge and groundwater use in sub-basins and major stream basins. The results of the analysis showed about 25% of the total wells could represent 90% of groundwater use ($37,923,516\;m^3$/year) in the Kap-cheon basin. A detailed analysis on the groundwater uses in the vicinity of down-town areas of Daejeon metropolitan city showed high groundwater uses ($1.4{\sim}11.1$ times) compared to the groundwater recharge previously estimated using the rainfall-runoff model. The ratio of groundwater use and groundwater recharge for the major river basins in Kap-cheon basin ranged from 1.9 to 2.3 indicating that more sustainable groundwater management should be exercised. The results of this study can be used as basic information in evaluating the change of groundwater flow, stream flow and water-cycle for various groundwater uses in the Kap-cheon basin.

Real Options Analysis of Groundwater Extraction and Management with Water Price Uncertainty

  • Lee, Jaehyung
    • Environmental and Resource Economics Review
    • /
    • v.27 no.4
    • /
    • pp.639-666
    • /
    • 2018
  • This paper analyses the investment options of groundwater development project under water price uncertainty. The optimal investment threshold price which trigger the investment are calibrated base on monopolistic real options model. Stochastic dynamic model is set to reflect the uncertainty of water price which follows the GBM (Geometric Brownian Motion) process. Our finding from non-cooperative investment decision model is that uncertainty of water price could deter the groundwater investment by considering the existence of option values. For policy markers, it is easy to manage 'charges for utilization of groundwater' rather than 'performance guarantee ratio' when managing groundwater investment with pricing policy. And it is necessary to make comprehensive and well-designed policies considering the characteristics of regional groundwater reservoir and groundwater developers.