• Title/Summary/Keyword: Groundwater level variability

Search Result 16, Processing Time 0.033 seconds

Analysis of groundwater level variability in the middle mountain area of Pyoseon watershed in Jeju Island using normalized standard deviation and cross correlation coefficient (정규화된 표준편차 및 교차상관계수를 이용한 제주도 표선유역 중산간지역의 지하수위 변동성 분석)

  • Shin, Mun-Ju;Moon, Soo-Hyoung;Moon, Duk Chul
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.5
    • /
    • pp.337-345
    • /
    • 2020
  • In order to provide information for proper management of groundwater resources, an analysis of the effects of precipitation and groundwater withdrawal on groundwater levels is needed. In this study, we analyzed the correlation of precipitation-groundwater level and groundwater withdrawal-groundwater level using time series data converted by normalized standard deviation (Nor.St.Dev) and cross correlation coefficient (CCC) for nine groundwater monitoring wells in the middle mountainous area in the southeastern Jeju Island. First, the CCCs of precipitation-groundwater level were estimated using daily time series data, and the low CCCs of up to 0.3 were obtained. However, the result of using the Nor.St.Dev showed a clearer correlation by obtaining a CCC of up to 0.8. In addition, in most cases, precipitation variability and groundwater level variability had positive CCCs, whereas groundwater withdrawal variability and groundwater level variability had negative CCCs. Therefore, the groundwater level in this study area was largely influenced by precipitation with little effect of groundwater withdrawal. Lastly, as a result of analyzing the relative effects of Seongpanak and Gyorae rainfall station on the groundwater level, the rainfall at the relatively downstream Gyorae rainfall station has more influence. The analysis method used in this study can be easily used for analyzing the effects of precipitation and groundwater withdrawal on groundwater level variability in other regions in the future.

Estimation of the allowable range of prediction errors to determine the adequacy of groundwater level simulation results by an artificial intelligence model (인공지능 모델에 의한 지하수위 모의결과의 적절성 판단을 위한 허용가능한 예측오차 범위의 추정)

  • Shin, Mun-Ju;Moon, Soo-Hyoung;Moon, Duk-Chul;Ryu, Ho-Yoon;Kang, Kyung Goo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.485-493
    • /
    • 2021
  • Groundwater is an important water resource that can be used along with surface water. In particular, in the case of island regions, research on groundwater level variability is essential for stable groundwater use because the ratio of groundwater use is relatively high. Researches using artificial intelligence models (AIs) for the prediction and analysis of groundwater level variability are continuously increasing. However, there are insufficient studies presenting evaluation criteria to judge the appropriateness of groundwater level prediction. This study comprehensively analyzed the research results that predicted the groundwater level using AIs for various regions around the world over the past 20 years to present the range of allowable groundwater level prediction errors. As a result, the groundwater level prediction error increased as the observed groundwater level variability increased. Therefore, the criteria for evaluating the adequacy of the groundwater level prediction by an AI is presented as follows: less than or equal to the root mean square error or maximum error calculated using the linear regression equations presented in this study, or NSE ≥ 0.849 or R2 ≥ 0.880. This allowable prediction error range can be used as a reference for determining the appropriateness of the groundwater level prediction using an AI.

Analysis of correlation between groundwater level decline and wetland area decrease

  • Amos Agossou;Jae-Boem Lee;Bo-Gwon Jung;Jeong-Seok Yang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.374-374
    • /
    • 2023
  • Groundwater is the main source of water on which relies many countries in case of emergency, this is the case of Japan in 2011 after the great Sendai Earthquake. This important resource is found to be heavily influenced by human induced factors such as wetland area reduction. For groundwater sustainable management in perfect cohesion with wetland it is important to understand the relationship between both resources. Wetlands have a strong interaction with both groundwater and surface water, influencing catchment hydrology and water quality. Quantifying groundwater-wetland interactions can help better identify locations for wetlands restoration and/or protection. This study uses observation data from piezometers and wetland to study the qualitative and quantitative aspects of the correlation. Groundwater level, wetland area, chemical, organic and inorganic contaminants are the important parameters used. the results proved that few contaminants in the wetland are found in groundwater and in general the wetland quality does not affect that much groundwater quality. The strong linear relationship found between wetland water level and nearest groundwater level proved that, in term of quantity, groundwater and wetland are strongly correlated. While wetland becoming dry, groundwater level has dropped in the region about 0.52m. The area of wetland was found to be lightly correlated with groundwater level, proving that wetlands dry has contributed to groundwater level declining. This study has showed that whilst rainfall variability contributed to the decline and loss of wetlands, the impacts from landuse changes and groundwater extraction were likely to be significant contributors to the observed losses.

  • PDF

Hydrological Variability of Lake Chad using Satellite Gravimetry, Altimetry and Global Hydrological Models

  • Buma, Willibroad Gabila;Seo, Jae Young;Lee, Sang-IL
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.467-467
    • /
    • 2015
  • Sustainable water resource management requires the assessment of hydrological variability in response to climate fluctuations and anthropogenic activities. Determining quantitative estimates of water balance and total basin discharge are of utmost importance to understand the variations within a basin. Hard-to-reach areas with few infrastructures, coupled with lengthy administrative procedures makes in-situ data collection and water management processes very difficult and unreliable. In this study, the hydrological behavior of Lake Chad whose extent, extreme climatic and environmental conditions make it difficult to collect field observations was examined. During a 10 year period [January 2003 to December 2013], dataset from space-borne and global hydrological models observations were analyzed. Terrestial water storage (TWS) data retrieved from Gravity Recovery and Climate Experiment (GRACE), lake level variations from Satellite altimetry, water fluxes and soil moisture from Global Land Data Assimilation System (GLDAS) were used for this study. Furthermore, we combined altimetry lake volume with TWS over the lake drainage basin to estimate groundwater and soil moisture variations. This will be validated with groundwater estimates from WaterGAP Global Hydrology Model (WGHM) outputs. TWS showed similar variation patterns Lake water level as expected. The TWS in the basin area is governed by the lake's surface water. As expected, rainfall from GLDAS precedes GRACE TWS with a phase lag of about 1 month. Estimates of groundwater and soil moisture content volume changes derived by combining altimetric Lake Volume with TWS over the drainage basin are ongoing. Results obtained shall be compared with WaterGap Hydrology Model (WGHM) groundwater estimate outputs.

  • PDF

Method of Estimating Groundwater Recharge with Spatial-Temporal Variability (시공간적 변동성을 고려한 지하수 함양량의 추정 방안)

  • Kim, Nam-Won;Chung, Il-Moon;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.517-526
    • /
    • 2005
  • In Korea, the methods of estimating groundwater recharge can categorized into two groups. One is baseflow separation method by means of groundurater recession curve, the other is water level fluctuation method by using the data from groundwater monitoring wells. Baseflow separation method is based on annual recharge and lumped concept, and water-table fluctuation method is largely dependent on monitoring wells rather than water budget in watershed. However, groundwater recharge rate shows the spatial-temporal variability due to climatic condition, land use and hydrogeological heterogeneity, these methods have various limits to deal with these characteristics. For this purpose, the method of estimating daily recharge rate with spatial variability based on distributed rainfall-runoff model is suggested in this study. Instead of representative recharge rate of large watershed, the subdivided recharge rate with heterogeneous characteristics can be computed in daily base. The estimated daily recharge rate is an advanced quantity reflecting the heterogeneity of hydrogeology, climatic condition, land use as well as physical behaviour of water in soil layers. Therefore, the newly suggested method could be expected to enhance existing methods.

Water table: The dominant control on CH4 and CO2 emission from a closed landfill site

  • Nwachukwu, Arthur N.;Nwachukwu, Nkechinyere V.
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.123-133
    • /
    • 2020
  • A time series dataset was conducted to ascertain the effect of water table on the variability in and emission of CH4 and CO2 concentrations at a closed landfill site. An in-situ data of methane/carbon dioxide concentrations and environmental parameters were collected by means of an in-borehole gas monitor, the Gasclam (Ion Science, UK). Linear regression analysis was used to determine the strength of the correlation between ground-gas concentration and water table. The result shows CH4 and CO2 concentrations to be variable with strong negative correlations of approximately 0.5 each with water table over the entire monitoring period. The R2 was slightly improved by considering their concentration over single periods of increasing and decreasing water table, single periods of increasing water table, and single periods of decreasing water table; their correlations increased significantly at 95% confidence level. The result revealed that fluctuations in groundwater level is the key driving force on the emission of and variability in groundgas concentration and neither barometric pressure nor temperature. This finding further validates the earlier finding that atmospheric pressure - the acclaimed major control on the variability/migration of CH4 and CO2 concentrations on contaminated sites, is not always so.

Classification and Characterization for Water Level Time Series of Shallow Wells at the National Groundwater Monitoring Stations (국가지하수관측소 충적관측정의 수위 변동 유형 분류 및 특성 비교)

  • Kim, Gyoo-Bum;Yum, Byoung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.86-97
    • /
    • 2007
  • The principal component analysis was performed to identify the general characteristics of groundwater level changes from 202 deep and 112 shallow wells monitoring data, respectively, which came from the National Groundwater Monitoring Stations operated by KWATER with time spans of 156 continuous weeks from 2003 to 2005. Eight principal components, which accounted for 80% of the variability of the original time series, were extracted for water levels of shallow and deep monitoring wells. As a result of cluster analysis using the loading value of three principal components for shallow wells, shallow monitoring wells were divided into 3 groups which were characterized with a response time to rainfall (Group 1: 4.6 days, Group 2: 24.1 days, Group 3: 1.4 days), average long-term trend of water level (Group 1: $2.05{\times}10^{-4}$ m/day, Group 2: $-7.85{\times}10^{-4}$ m/day, Group 3: $-3.51{\times}10^{-5}$ m/day) and water level difference (Group 1 < Group 2 < Group 3). Additionally, they showed significant differences according to a distance to the nearest stream from well (Group 3 < Group 2 < Group 1), topographic slope of well site (Group 3: plain region, Group 1: mountainous region) and groundwater recharge rate (Group 3 < Group 2 < Group 1) with a p-value of 0.05.

Impact of predicted climate change on groundwater resources of small islands : Case study of a small Pacific Island

  • Babu, Roshina;Park, Namsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.145-145
    • /
    • 2018
  • Small islands rely heavily on groundwater resources in addition to rainwater as the source of freshwater since surface water bodies are often absent. The groundwater resources are vulnerable to sea level rise, coastal flooding, saltwater intrusion, irregular pattern of precipitation resulting in long droughts and flash floods. Increase in population increases the demand for the limited groundwater resources, thus aggravating the problem. In this study, the effects of climate change on Tongatapu Island, Kingdom of Tonga, a small island in Pacific Ocean, are investigated using a sharp interface transient groundwater flow model. Twenty nine downscaled General Circulation Model(GCM) predictions are input to a water balance model to estimate the groundwater recharge. The temporal variation in recharge is predicted over the period of 2010 to 2099. A set of GCM models are selected to represent the ensemble of 29 models based on cumulative recharge at the end of the century. This set of GCM model predictions are then used to simulate a total of six climate scenarios, three each (2010-2039, 2040-2069, and 2070-2099) under RCP 4.5 and RCP 8.5. The impacts of predicted climate change on groundwater resources is evaluated in terms of freshwater volume changes and saltwater ratios in pumping wells compared to present conditions. Though the cumulative recharge at the end of the century indicates a wetter climate compared to the present conditions the large variability in rainfall pattern results in frequent periods of groundwater drought leading to saltwater intrusion in pumping wells. Thus for sustaining the limited groundwater resources in small islands, implementation of timely assessment and management practices are of utmost importance.

  • PDF

A Study on the Relation between Types and Recharges of Groundwater : Analysis on National Groundwater Monitoring Network Data (지하수위 유형과 유역별 지하수 함양률의 관련성 연구 : 국가 지하수 관측망 자료의 분석)

  • 문상기;우남칠;이광식
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.45-59
    • /
    • 2002
  • This study is objected to demonstrate the spatial variability of the ground-water recharge by classifying the types of ground-water hydrographs and assessing the recharge ratio(the ratio of the rise of ground-water level to cumulative precipitation) of each type using the National Ground-water Monitoring network data. A total of 5 types were identified by factor analysis on the ground-water hydrographs nationwide. The recharge ratio of each type were estimated to be 6.5% (TYPE I), 4.1 % (TYPE II), 9.2%(TYPE III), 5.8 %(TYPE IV), 15.3 %(TYPE V) in the confidence level of 95.44% and 6% variation was estimated site by site even in the same type. The recharges of Han, Nakdong, Keum, Youngsan·Seomjin river basins were estimated as 10.0 %, 6.1 %, 8.3 %. and 6.6 % respectively. These results were consistent with the results of the existing baseflow method.

Analysis on the Risk-Based Screening Levels Determined by Various Risk Assessment Tools (I): Variability from Different Analyses of Cross-Media Transfer Rates (다양한 위해성평가 방법에 따라 도출한 오염토양 선별기준의 차이에 관한 연구 (I): 매체 간 이동현상 해석에 따른 차이)

  • Jung, Jae-Woong;Ryu, Hye-Rim;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.2
    • /
    • pp.12-29
    • /
    • 2011
  • Risk-based screening levels (RBSLs) of some pollutants for residential adults were derived with risk assessment tools developed by United States Environmental Protection Agency (USEPA), American Society for Testing and Materials (ASTM), and Korea Ministry of Environment (KMOE) and compared each other. To make the comparison simple, ingestion of soil, dermal contact with soil, outdoor inhalation of vapors, indoor inhalation of vapors, and inhalation of soil particulates were chosen as exposure pathways. The results showed that the derived RBSLs varied for every exposure pathway. For direct exposure pathways (i.e., ingestion of soil and dermal contact with soil), the derived RBSLs varied mainly due to the different default values for exposure factors and toxicity data. When identical default values for the parameters were used, the same RBSLs could be derived regardless of the assessment tools used. For inhalation of vapors and inhalation of soil particulates, however, different analysis methods for cross-media transfer rates were used and different assumptions were established for each tool, identical RBSLs could not be obtained even if the same default values for exposure factors were used. Especially for inhalation of soil particulates pathway, screening level derived using KMOE approach (most conservative) was approximately 5000~10000 times lower than the screening level derived using ASTM approach (least conservative). Our results suggest that, when deriving RBSL using a specific tool, it is a prerequisite to technically review the analysis methods for cross-media transfer rates as well as to understand how the assessment tool derives the default values for exposure factors.