• Title/Summary/Keyword: Groundwater flows

Search Result 99, Processing Time 0.03 seconds

Reduction of RDX in Ground Water by Bio-Regenerated Iron Mineral: Results of Field Verification Test at a Miliary Shooting Range (생물환원 철광물촉매에 의한 지하수 내 RDX 환원:군사격장 현장적용 실증결과)

  • Gong, Hyo-young;Lee, Kwang-pyo;Lee, Jong-yeol;Kyung, Daeseung;Lee, Woojin;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.62-72
    • /
    • 2015
  • This study investigates the in-situ implementation of bio-regenerated iron mineral catalyst to remove explosive compounds in ground water at a military shooting range in operation. A bio-regenerated iron mineral catalyst was synthesized using lepidocrocite (iron-bearing soil mineral), iron-reducing bacteria Shewanella putrefaciens CN32, and electron mediator (riboflavin) in the culture medium. This catalyst was then injected periodically in the ground to build a redox active zone acting like permeable reactive barrier through injection wells constructed at a live fire military shooting range. Ground water and core soils were sampled periodically for analysis of explosive compounds, mainly RDX and its metabolites, along with toxicity analysis and REDOX potential measurement. Results suggested that a redox active zone was formed in the subsurface in which contaminated ground water flows through. Concentration of RDX as well as toxicity (% inhibition) of ground water decreased in the downstream compared to those in the upstream while concentration of RDX reduction products increased in the downstream.

Comparison of SWAT-K and HSPF for Hydrological Components Modeling in the Chungju Dam Watershed (충주댐 유역의 SWAT-K와 HSPF모형에 의한 수문성분 모의특성 비교 분석)

  • Kim, Nam-Won;Shin, Ah-Hyun;Kim, Chul-Gyum
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.609-619
    • /
    • 2009
  • SWAT-K model is a modified version of the original SWAT, and is known to more accurately estimate the streamflows and pollutant loadings in Korean watersheds. In this study, its hydrological components were compared with those of HSPF in order to analyse the differences in total runoff including evapotranspiration(ET), surface flow, lateral flow and groundwater flow from the Chungju Dam watershed during $2000{\sim}2006$. Averaged annual runoff with SWAT-K overestimated by 1%, and HSPF underestimated it by 3% than observed runoff. Determination coefficients($R^2$) for observed and simulated daily streamflows by both the models were relatively good(0.80 by SWAT-K and 0.82 by HSPF). Potential ET and actual ET by HSPF were lower in winter, but similar or higher than those by SWAT-K. And though there were some differences in lateral and groundwater flows by two models because of the differences in hydrological algorithms, the results were to be reasonable. From the results, it was suggested that we should utilize a proper model considering the characteristic of study area and purposes of the model application because the simulated results from same input data could be different with models used. Also we should develop a novel model appropriate to Korean watersheds by enhancing limitations of the existing models in the future.

Technical Approaches for Assessment of Ground Water Contamination with TCE in an Industrial Area

  • Jeon, Kweonho;Yu, Soonyoung;Jeong, Jangsik;Son, Yanglae
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.10a
    • /
    • pp.70-86
    • /
    • 2003
  • Despite its usability, TCE has been managed as a hazardous material due to the toxicity and many contamination cases were surveyed in some developed countries. U.S.EPA(Kram et al., 2001) suggested DNAPL characterization methods and approaches based on survey experiences at several sites. However, Korea has not the least assessment of contamination and trial of remediation, although there are a lot of doubtable areas where ground water would be contaminated with TCE. In this study, we try to assess the volume and extent of ground water contamination with TCE and delineate the contamination source zones in an industrial area. Ground water in this area flows through fractures and the contaminant TCE has the properties of high volatility, high density and low partitioning to soil material. Thus, we applied a variety of technical approaches to identify the contamination status; documentary, hydrogeochemical, hydrogeological and geological surveys. In addition, additional survey was performed based on the interim findings, which showed that ground water contamination was limited to the relatively small area with high concentrations to the deep place. The contamination source zone is estimated to be the asphalt test institute where a great deal of TCE has been used to analyze the amount of asphalt soluble in TCE since 1984. Based on the contamination characterization and a myriad of documents about ground water remediation, appropriate site remediation management options will be recommended later. This study is now under way and this paper was focused on describing the technical approaches used to achieve the goals of this study.

  • PDF

A Case Study on the Design of Tunnel Excavation in Geological Anomalies (터널굴착시 지질이상대 통과방안 설계사례 연구)

  • Yoo, Joung-Hoon;Kim, Yang-Kyun;Chung, Chul-Hwa
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.341-348
    • /
    • 2011
  • As a result of the detailed site investigation performed for the design of a 4.3 km long tunnel, geological anomalies of four fault zones and a rock boundary were discovered on the tunnel route. Most of all, it was confirmed that pyrite, which may corrode steel material, is contained inside the geological anomalies, and pressured ground water flows out of the fault fractured zone. To overcome these geological conditions, antisulfur concrete for the concrete lining and anticorrosive swelling rock bolts are designed in the pyrite-containing sections. For the sections where a great amount of groundwater outflows, water blocking methods including grouting are applied according to the result of numerical analyses on the seepage. In addition, since the past earthquakes occurred around Korea have take place mainly near fault zones, seismic analyses were performed based on the Soil-Structure Interaction (SSI) concept and the strength of concrete tunnel lining is designed to be 27 MPa from 24 MPa in order to reinforce the tunnel structure.

Impacts of Nitrate in Base Flow Discharge on Surface Water Quality (질산성 질소 기저유출이 지표수 수질에 미치는 영향)

  • Kim, Geonha;Lee, Hosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.105-109
    • /
    • 2009
  • It is a well known fact that baseflow discharge of rainfall runoff impacts on water quality of surface water significantly. In this paper, impacts of nitrate discharged as base flow on stream water quality were studied by using a software, PULSE from USGS to calculate monthly ground water discharge from hydrograph. We used water quality and flow rate data for Ghapcehon2 site in Daejeon city for year 2005 as well as ground water quality data in the watershed acquired from government agencies. Agricultural and forestry land use are dominant for upstream of Ghapcheon2 in the watershed. Base flow contributes about 85~95% of stream flows during spring and fall while 25~38% of stream flow was induced by base flow during summer and winter. Monthly nitrate loading discharged as base flow for Ghapcheon2 was estimated by using averaged nitrate concentration of groundwater in the watershed. Nitrate loading induced by base flow at Ghapcheon2 was estimated as 5.4 ton of $NO_{3}{^-}-N/km^{2}$, which is about 60% of nitrate loading of surface water, 9.2 ton of $NO_{3}{^-}-N/km^{2}$. Seasonal variation of nitrate concentration of base flow was estimated by dividing monthly nitrate loading by monthly base flow discharge. Nitrate concentration of groundwater was increasing from rainy season. From this study, it can be understood that ground water quality monitoring is important for the proper manage of surface water quality.

Estimating Leaching of Nutrients and Pesticides in Agricultural Lands -A Perferential Flow Model- (농경지의 비료, 농약의 지하유실량 추정 -Preferential 흐름모형-)

  • 이남호;타모스틴후이스
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.62-73
    • /
    • 1997
  • The application of nutrients and pesticides to agricultural lands has been reported to contribute to groundwater contamination, which can be explained by preferential flow in lieu of convective-dispersive flow. An one-dimensional numerical model depicting preferential water and solute movement was modified to describe multi-layer flows. The model is based on a piecewise linear conductivity function. By combining conservation of mass and Darcy's law and using the method of characteristics a solution is obtained for water flow in which water moves at distinct velocities in different flow regions instead of an average velocity for the whole profile. The model allows transfer ofqr solutes between pore groups. The transfer is characterized by assuming mixing coefficients. The model was applied to undisturbed soil columns and an experiment site with structured sandy clay loam soil. Chloride, bromide, and 2, 4-D were used as tracers. Simulated solutes concentrations were in good agreement with the soil column data and field data in which preferential flow of solute is significant. The proposed model is capable of describing preferential solute transport under laboratory and field conditions.

  • PDF

Detection of inflow permeable zones using fluid conductivity logging in coastal aquifer (공내수 치환기법을 이용한 연안지역 대수층의 수리특성 평가)

  • Hwang Seho;Park Yunsung;Shim Jehyun;Park Kwon Gp;Choi Sun Young;Lee Sang Kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.83-92
    • /
    • 2005
  • Fluid conductivity logging has been applied in the boreholes to identify the permeable fi:actures and estimate the origin of saline groundwater in coast area. Fluid replacement technique measures the fluid electrical conductivity with depth at different times in a well after the borehole is first washed out with different water by passing a tube to the borehole bottom. Then formation water flows into the borehole through aquifer such as permeable fractures or porous formation during ambient or pumping condition. Measured conductivity profiles with times therefore indicate the locations of permeable zone or fractures within the open hole or the fully slotted casing hole. As a result of fluid conductivity logging for three boreholes in the study area, it is interpreted that saline groundwater is caused by seawater intrusion through fractured rock, although the effect by land reclamation partially remains. We are planning the quantitative analysis to estimate the hydraulic characteristics using fluid replacement technique, and this approach might be usefully utilized for assessing the characteristics of seawater intrusion, the design of optimal pumping, and estimating the hydraulic properties in coastal aquifer.

  • PDF

Relations between Electrical and Hydraulic Properties of Aquifer in the Ganam Area (가남지역 대수층의 전기적, 수리적 특성 사이의 관계)

  • 이기화;최병수;한원석
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.2
    • /
    • pp.78-84
    • /
    • 1995
  • In 1983, 83 Wenner vertical electrical sounding(VES)s and 22 pumping tests had been carried out by Korea Agricultural Development Corporation(KADC) in Guam Myun, Yeoju Gun, Kyounggi Province. Also, 10 boreholes had been constructed in the area. Using these data electrical and hydraulic properties of aquifer in the Ganam area are investigated in this study. Assuming that the underground is 1-D, VES data are analyzed. Data analysis shows that the subsurface of study area can be interpreted as 4-layer structure and the 3rd layer which is regarded as aquifer has mean thickness of 10 m and mean resistivity of 506 ohm-m and rests on resistive bedrock. Under the circumstances, as most part of electric current flows parallel to the bedding, longitudinal unit conductance is an important parameter controlling VES curves and very closely correlates with transmissivity of aquifer in the study area. Thus, relation between longitudinal unit conductance and transmissivity is investigated in this study. Since resistivity and thickness of each layer are obtained from interpretation of VES data, the relations between transmissivity and resistivity, and between hydraulic conductivity and resistivity are also studied. Studies of such relations show that longitudinal conductance is proportional to transmissivity, and resistivity is inversely proportional to transmissivity and hydraulic conductivity.

  • PDF

Simulation for application of pumping-and-treatment system to the recovery of non-aqueous phase liquids (NAPLs) at and below the water table (토양의 포화지대에 분포하는 고밀도비수상액체(DNAPL)와 저밀도비수상액체(LNAPL)의 펌핑 제거공정에 대한 모사)

  • 김주형;이종협
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.51-61
    • /
    • 1997
  • The objective of this study is to evaluate the feasibility of Pumping-and-Treatment system (PTS) for remediation of the saturated zones contaminated with NAPLs. A simulation is carried out for the removal of DNAPLs (denser-than-water non-aqueous phase liquids) and LNAPLS (lighter-than-water non-aqueous phase liquids) distributing at and below the water table. In the study, LNAPL and DNAPL are assumed to be n-hexane and 1,1-dichloroacetone, respectively. The model system studied consists of four heterogeneous soil layers with different permeabilities. Groundwater flows through the bottom layer and a pumping well is located under the initial water table. The time-driven deformation of the water table and removal efficiency of contaminants are estimated after vacuum application to the inlet of the well. In the calculation, FVM (Finite Volumetric Method) with SIMPLEC algorithm is applied. Results show that removal efficiencies of both DNAPL and LNAPL are negligible for the first 5 days after the PTS operation. However, when the cone-shape water table is formed around the inlet of the pumping well, the rapid removal rate is obtained since NAPLs migrate rapidly through the curvature of the water table. The removal efficiency of DNAPL is estimated to be higher than that of LNAPL due to the gravity. The results also show that the fluctuation or cone-shaped depression of the water table enhances the removal efficiency of NAPLs in saturated zones. The simulation results could provide a basis of the PTS design for the removal of NAPLs in saturated zones.

  • PDF

Simultaneous Removal of Cd & Cr(VI) by Fe-loaded Zeolite in Column System (Fe-loaded zeolite를 이용한 칼럼 실험에서의 Cd & Cr(VI) 동시제거 반응성 평가)

  • Lee Ah-Ra;Lee Seung-Hak;Park Jun-Boum
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.14-22
    • /
    • 2006
  • Laboratory column experiment for simultaneous removal of Cd and Cr(VI) were conducted using newly developed material of Fe-loaded zeolite having both reduction ability and sorption capacity. The solution containing Cd and Cr(VI) was injected into the column and the breakthrough curves (BTCs) for the contaminants were observed at the effluent port. Cd breakthrough was not initialized until Cr(VI) breakthrough was completed. Therefore it could be concluded that overall efficiency of Fe-loaded zeolite should be determined by the reactivity for Cr(VI). The relative concentration of Cr(VI) BTC increased to the unit value while initial breakthrough was delayed and the propagation of breakthrough was slowed. In order to quantitatively describe the shape of Cr(VI) BTC, new parameters of ${\alpha}\;and\;{\beta}$ designated to be shape parameters, were defined and applied in contaminant transport concentration. These parameters were employed to represent the degree of initial breakthrough delay and the degree of breakthrough propagation, respectively. As initial contaminant concentration increased, ${\alpha}$ decreased, which indicated the delay of BTC's initiation. And as initial contaminant flow rate increased, ${\beta}$ decreased, which represented the faster propagation of the BTC. From these results, Fe-loaded zeolite was found to be an effective reactive material for PRBs against heavy metals having different ionic forms in groundwater. And it could be expected that as groundwater flows faster, the propagation of breakthrough would be faster and as contaminant concentration is higher, the initial point of breakthrough would appear earlier.