• Title/Summary/Keyword: Groundwater depletion

Search Result 68, Processing Time 0.031 seconds

Analysis of Stream Depletion due to Groundwater Pumping in Variable Stream Stages Using an Analytical Model (해석적 모형을 이용한 지하수 양수 및 하천수위 변화에 따른 하천수 감소 특성 분석)

  • Lee, Jeongwoo
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.439-449
    • /
    • 2019
  • To prevent the drying-out of streams and to make effective use of stream water and groundwater, it is necessary to evaluate the impact of groundwater pumping on nearby streams. To this end, stream depletion due to groundwater pumping should be investigated in terms of various hydraulic characteristics of the aquifer and stream. This study used the Baalousha analytical solution, which accounts for stream-stage variation over time, to analyze stream depletion due to groundwater pumping for cases where the stream level decreases exponentially and recovers after the decrease. For conditions such as an aquifer transmissivity of 10~100 ㎡ d-1, storage coefficient 0.05~0.3, streambed hydraulic conductance 0.1~1.0 m d-1, stream-well distance 100~500 m, and stage recession coefficient 0.1~1.0 d-1, the contribution of stream water (the dimensionless ratio of stream water reduction rate to groundwater pumping rate) was analyzed in cases where stream level change was considered. Considering the effect of stream-stage recession, the contribution of stream water is greatly reduced and is less affected by the stream-depletion factor, which is a function of the stream-to-well distance and hydraulic diffusivity. However, there is no significant difference in stream depletion under constant- and variable-stage recovery after recession. These results indicate that stream level control can distribute the relative impacts on stream water and aquifer storage during groundwater pumping

An Analysis of Groudwater Budget in a Water Curtain Cultivation Site (청원 수막재배 지역의 물수지 특성 분석)

  • Chang, Sun Woo;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1259-1267
    • /
    • 2015
  • In Korea, rural groundwater development faces new challenge, which have not been experienced so far. The problem is a groundwater depletion by the water curtain cultivation (WCC) during winter season. This study investigates the groundwater depletion using three-dimensional finite difference groundwater flow program, MODFLOW to verify the water budget of the shallow aquifer of Cheongweon area. Interdisciplinary research, which has become a worldwide trend, has been adopted in studying groundwater modeling in field scale. In particular, the method of groundwater recharge estimation adopted precise modeling techniques, SWAT to groundwater flow modeling. Based on qualified field data, the model calibrated and validated its reliability. The objective of this study is to simulate various stream-aquifer interactions according to groundwater pumping with artificial boundaries, such as weirs and drainage system. We also analyzed a seasonal variation of cumulative water budget of the site to quantify the groundwater depletion and recovery in the pumping field.

Evaluation of Stream Depletion from Groundwater Pumping in Deep Aquifer Using An Analytical Model (해석적 모형을 이용한 심부대수층 지하수 양수로 인한 하천수 감소량 분석)

  • Lee, Jeongwoo;Chung, Il-Moon;Kim, Nam Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.769-777
    • /
    • 2016
  • The objective of this study was to evaluate the stream depletion from groundwater pumping in deep aquifer using the Ward and Lough's analytical solution (2011) which considers a two-layer leaky aquifer system. The calculated results for each pumping from the 110 wells beside streams showed a wide range of non-dimensional stream depletion, that is the streamflow depletion rate divided by the groundwater pumping rate, from lower than 0.1 to more than 0.9 on average for 5 years depending on the specific properties of well location. From the comparison with Hunt's solution (1999) of a single layer aquifer, the Ward and Lough's solution showed about 50% lower than the Hunt's solution due to the difference of hydraulic properties between the first and second layers as well as the lagged effect of vertical leakance. It was also found that the groundwater pumping has a minor effect on the stream depletion if the stream depletion factor (SDF) of the 1st layer is higher than about 1,000 or the SDF of the 2nd layer is higher than about 100, or the vertical leakance is smaller than $10^{-5}s^{-1}$. Furthermore, in the present study, the variations of the stream depletion were assessed according to the magnitude of unmeasured hydraulic properties such as transmissivity and storage coefficient of the 1st layer, vertical hydraulic conductivity of the 2nd layer, the streambed hydraulic conductance.

Assessment of Effects of Groundwater Pumping from Deep Aquifer on Streamflow Depletion (죽산천 주변 암반층 지하수 양수로 인한 하천수 감소 영향 분석)

  • Lee, Jeongwoo;Kim, Nam Won;Chung, Il Moon;Cha, Joon Ho
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.9
    • /
    • pp.769-779
    • /
    • 2015
  • The streamflow depletion due to groundwater pumping from deep aquifer near the Juksan stream has been simulated, in this study, by using the surface water and groundwater integrated model, SWAT-ODFLOW in order to analyze the relationship between the stream depletion and hydraulic properties of aquifer and streambed, and to spatially assess the streamflow depletion. The simulated results showed that the streamflow depletion rate divided by the pumping rate for each well location ranges from 10% to 90% with reflecting the various well-stream distance, transmissivity, storativity, and streambed hydraulic conductance. In particular, the streamflow depletion exceeds about 50% of pumping rate for conditions with transmissivity higher than $10m^2/day$ or storage coefficient lower than 0.1. The simulated results in the form of spatial maps indicated that the spatially averaged percent depletion of streamflow is about 53.6% for five years of pumping which is lower than that for shallow aquifer pumping by 12.9%. From the spatially distributed stream depletion, it was found that higher and more rapid stream depletion to pumping occurs near middle-downstream reach.

Comparative Analysis of Shallow and Deep Groundwater Pumping Effects on Stream Depletion (천부와 심부지하수 양수에 따른 하천수 감소 영향의 비교분석)

  • Lee, Jeongwoo;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.383-391
    • /
    • 2020
  • In this study, Hunt's analytical solution and Ward & Lough's analytical solution for two-layered leaky aquifer system were used to estimate stream depletions due to shallow and deep groundwater pumping, and their differences were compared. Depending on the combination of the separation distance between the stream and the well, the transmissivity and the storage coefficient of the aquifer, and the leakage coefficient between the upper and lower layers, the stream depletion, which is the amount of stream water reduction compared to the amount of groundwater pumping, for each of 45,000 cases was calculated for both shallow and deep groundwater pumping, and the differences were analyzed quantitatively. When the leakage coefficient was very small, with a value of 10-61/d, the difference in the average five-year stream depletion due to the pumping of shallow and deep groundwater showed a large deviation of up to 0.9 depending on the given hydraulic characteristics; this value exponentially decreased as the stream depletion factor (SDF) increased. This exponential relationship gradually weakened as the leakage coefficient increased due to interaction effects between layers, resulting in a small difference of up to 0.2 when the leakage coefficient reached 10-31/d. Under the condition of greater interlayer hydraulic connectivity, there was little influence of the depth of groundwater pumping on the stream water reduction.

Change of Groundwater-Streamflow Interaction according to Groundwater ion in a Green House Land (비닐하우스 지역의 지하수 양수에 따른 지하수-하천수 상호 유동 변화 분석)

  • Kim, Nam Won;Lee, Jeong Woo;Chung, Il Moon;Kim, Chang Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.10
    • /
    • pp.1051-1067
    • /
    • 2012
  • Increased use of water curtain facilities to keep green house warm during winter cultivation has been known to cause excessive groundwater ion which might lead to decline of groundwater level, resulting in streamflow depletion. Therefore it is required to quantitatively assess the effects of groundwater ion on the streamflow depletion such as magnitude and extent. The objective of this study is to assess the change of stream-aquifer interaction according to groundwater ion near stream. To this end, a green house cultivation land in Sooha-ri, Sindun-myun, Icheon-si, Gyonggi-do was selected as a field experimental site, and monitoring wells were established near and within stream to observe the water level and temperature changes over a long period of time. From the observed water level and temperature data, it was found that the river reach of interest changed to a losing stream pattern during the winter cultivation season due to groundwater level decline around pumping wells near the stream. The continuous exchange rates between stream and aquifer were estimated by plugging the observed water level data series into the experimental relation between head difference and exchange rate, showing the streamflow depletion by 16% of the groundwater pumping rate in Feb, 2011.

Evaluation of stream depletion due to nearby groundwater pumping using Baalousha analytical solution (Baalousha 해석해를 이용한 하천 주변 지하수 양수로 인한 하천수 감소 분석)

  • Lee, Jeongwoo;Kim, Nam Won;Chung, Il-Moon;Hong, Sung Hun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.99-107
    • /
    • 2018
  • This study was to evaluate the stream depletion due to groundwater pumping from 17 wells near the Anseongcheon upper stream using the Baalousha's analytical solution (2012) which directly considers stream width and streambed hydraulic conductivity. The input hydraulic values of aquifer and streambed were obtained from the pumping tests and seepage experiments. The estimated streamflow depletion rates divided by pumping rate (dimensionless stream depletion) showed a range from 0.23 to 0.89 for 5 year pumping. In particular, the results revealed that the groundwater pumping has insignificant effects on streamflow when the stream depletion factor (SDF) is higher than 1,000 with values of dimensionless stream depletion lower than 0.4. A more simple Hunt's solution (1999) also applied to the same wells, and the results showed that the difference between the dimensionless stream depletions calculated by using both solutions could be negligible. From the comparison of the Baalousha's solution (2012) with the Hunt's solution (1999) with total 3,000 cases of simulations with combinations of various aquifer and stream properties, the stream-well distance should be more longer than stream width for reducing the discrepancy between both solutions.

A Note on Estimating and Managing Groundwater Reserves (지하수 부존량 평가와 관리에 대한 소고)

  • Lee, Byung Sun;Park, Jong Hwan;Myoung, Wooho;Son, Joohyeong;Lee, Sanghaw;Shim, Gyuseong;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.28-36
    • /
    • 2018
  • This study was conducted to estimate groundwater reserves within a designated depth. Three methods were applied to one representative county in southern Gyeongsang province, South Korea, to estimate the groundwater reserves in the aquifers. Estimated amounts of groundwater reserves in the region ranged from $20.2{\times}10^9m^3$ to $68.7{\times}10^9m^3$ (average $37.9{\times}10^9m^3$). Groundwater recharge obtained with a recharge ratio of 16.6% was $1.1{\times}10^9m^3/year$. Exploitable groundwater with an assumption of decadal-cycle minimal rainfall of 977.0 mm/year was approximated as 72% ($0.8{\times}10^9m^3/year$) of the total replenished water by recharge. The volume of recharge and exploitable water accounted for only 1.1% and 0.8% of groundwater reserves, respectively, which indicates substantial capacity of the reservoir to supply groundwater in an event of unexpected droughts. Nonetheless, each groundwater well should strictly comply with its allocated pumping rate to avoid alluvial groundwater depletion.

A Study on the Use of GIS-based Time Series Spatial Data for Streamflow Depletion Assessment (하천 건천화 평가를 위한 GIS 기반의 시계열 공간자료 활용에 관한 연구)

  • YOO, Jae-Hyun;KIM, Kye-Hyun;PARK, Yong-Gil;LEE, Gi-Hun;KIM, Seong-Joon;JUNG, Chung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.50-63
    • /
    • 2018
  • The rapid urbanization had led to a distortion of natural hydrological cycle system. The change in hydrological cycle structure is causing streamflow depletion, changing the existing use tendency of water resources. To manage such phenomena, a streamflow depletion impact assessment technology to forecast depletion is required. For performing such technology, it is indispensable to build GIS-based spatial data as fundamental data, but there is a shortage of related research. Therefore, this study was conducted to use the use of GIS-based time series spatial data for streamflow depletion assessment. For this study, GIS data over decades of changes on a national scale were constructed, targeting 6 streamflow depletion impact factors (weather, soil depth, forest density, road network, groundwater usage and landuse) and the data were used as the basic data for the operation of continuous hydrologic model. Focusing on these impact factors, the causes for streamflow depletion were analyzed depending on time series. Then, using distributed continuous hydrologic model based DrySAT, annual runoff of each streamflow depletion impact factor was measured and depletion assessment was conducted. As a result, the default value of annual runoff was measured at 977.9mm under the given weather condition without considering other factors. When considering the decrease in soil depth, the increase in forest density, road development, and groundwater usage, along with the change in land use and development, and annual runoff were measured at 1,003.5mm, 942.1mm, 961.9mm, 915.5mm, and 1003.7mm, respectively. The results showed that the major causes of the streaflow depletion were lowered soil depth to decrease the infiltration volume and surface runoff thereby decreasing streamflow; the increased forest density to decrease surface runoff; the increased road network to decrease the sub-surface flow; the increased groundwater use from undiscriminated development to decrease the baseflow; increased impervious areas to increase surface runoff. Also, each standard watershed depending on the grade of depletion was indicated, based on the definition of streamflow depletion and the range of grade. Considering the weather, the decrease in soil depth, the increase in forest density, road development, and groundwater usage, and the change in land use and development, the grade of depletion were 2.1, 2.2, 2.5, 2.3, 2.8, 2.2, respectively. Among the five streamflow depletion impact factors except rainfall condition, the change in groundwater usage showed the biggest influence on depletion, followed by the change in forest density, road construction, land use, and soil depth. In conclusion, it is anticipated that a national streamflow depletion assessment system to be develop in the future would provide customized depletion management and prevention plans based on the system assessment results regarding future data changes of the six streamflow depletion impact factors and the prospect of depletion progress.

Groundwater use management using existing wells to cope with drought

  • Amos, Agossou;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.450-450
    • /
    • 2022
  • The study aims to develop scenarios for efficient groundwater use using existing wells in order to prepare for an eventual drought. In the recent decades, droughts are not only intensifying, but they are also spreading into territories where droughts used to be less intense and relatively infrequent. With the increasing disaster, efficient groundwater use is urgently needed not only to prevent the problem of groundwater depletion but also drought risk reduction. Thus, the research addressed the problem of efficient aquifer use as source of water during drought and emergencies. The research focused on well network system applied to Yanggok-ri in Korea using simulation models in visual MODFLOW. The approach consists to variate groundwater pumping rate in the most important wells used for irrigation across the study area and evaluate the pumping effect on water level fluctuation. From the evaluation, the pumping period, appropriate pumping rate of each well and the most vulnerable wells are determined for a better groundwater management. The project results divide the study area into two different regions (A and B), where the wells in the region A (western part of the region) show a crucial drop in water level from May to early July and in august as consequence of water pumping. While wells in region B are also showing a drawdown in groundwater level but relatively less compare to region A. The project suggests a scenarios of wells which should operate considering water demand, groundwater level depletion and daily pumping rate. Well Network System in relevant project, by pumping in another well where water is more abundant and keep the fixed storage in region A, is a measure to improve preparedness to reduce eventual disaster. The improving preparedness measure from the project, indicates its implication to better groundwater management.

  • PDF